Прямоугольный параллелепипед АВСДФ1В1С1Д1, В1Д=57, СД/АД/В1В=6/10/15=6х/10х/15х, в основании прямоугольник АВСД, ВД в квадрате=АД в квадрате+АВ в квадрате= 100*х в квадрате+36*х в квадрате=136*х в квадрате, трегольникВ1ВД прямоугольный, ВД в квадрате=В1Д в квадрате-В1В в квадрате=3249-225*х в квадрате, 136*х в квадрате=3249-225*х в квадрате, 361*х в квадрате=3249, х=3, АД=10*3=30, СД=6*3=18, В1В=15*3=45, площади оснований=2*АД*СД=2*30*18=960, площадь боковой=периметр основания*высоту=(30+18+30+18)*45=4320, полная площадь=960+4320=5280
1. S = ½×(4+8)×5 = ½×6×5 = 3×5 = 15 см².
2. S=150, h=S:(½×(a+b)) = 150:(½×(9+11)) = 150:(½×20) = 150:10 = 15 см.
3. Пусть высота будет BH(нужно отметить Н на рисунке). Проведём высоту из точки С, будет она СЕ. Т.к. трапеция равнобедренная, то АН=DE. AH=BH=4 см, ведь угол А=45°, угол Н=90°, соответственно угол В=45° и треугольникк АВН равнобедренный. Из этого, AD=4+5+4 = 13 см.
Найдём площадь: S=½×(5+13)×4 = ½×18×4 = 9×4 = 36 см².
4. Пусть одна часть будет х, тогда BC=3x, AD=4x.
S=½×(3x+4x)×5 = ½×7x×5 = 3,5x×5 = 17,5x -> 17,5x = 35.
x=2 см.
AD=4x = 4×2 = 8 см.
Сторона ВС находится из теоремы косинусов по фолмуле
ВС² = АВ² + АС² - 2 * АВ * ВС * cos A = 6² + 10² - 2 * 6 * 10 * cos 110° =
= 36 + 100 - 120 * cos 110°= 136 - 120 * (-0,342) = 177,04
Тогда ВС = √177,04 ≈ 13,3
Углы В и С находим с теоремы синусов
sin 110° sin B sin C
= =
BC AC AB
Тогда sin B = 10 * 0,9397 / 13,3 = 0,7062 B = arcsin 0,7062 ≈ 45°
sin C = 6 * 0,9397 / 13,3 = 0,4237 C = arcsin 0,4237 ≈ 25°