Проводим линию параллельную меньшей боковой стороне трапеции от угла, который между меньшим основанием и большей боковой стороной трапеции. Мы получаем прямоугольный треугольник, два угла которого равны 45 и 90 градусам.
Следующий шаг - отнимаем от большего основания меньшее - 10,7-2=8,7 (см) - длина большего основания за линией или один из катетов угла.
Так как сумма углов треугольника равна 180 градусам, то находим оставшийся угол этого самого треугольника - 180-90-45=45 градусов.
Угол в 45 градусов равен второму углу в 45 градусом, следовательно, этот треугольник - равнобедренный и его второй катет равен 8,7 см.
Так как второй катет проведен параллельно меньшей боковой стороне, то они, соответственно, равны 8,7 см.
ответ 8,7 см
Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна