М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
natochkaa333
natochkaa333
16.03.2021 21:51 •  Геометрия

Вокруг выпуклого четырёхугольника abcd описана окружность. к - точка пересечения диагоналей данного четырёхугольника. угол вkс = 60 градусов, ав = 43, dс = 4. найти радиус описанной окружности.

👇
Ответ:
Икари301202
Икари301202
16.03.2021
ABCD -  выпуклый четырехугольник,  вписанный в окружность

AC ∩ BD=K

∠ BKC=60к

AB=43

DC=4

Воспользуемся:

Для произвольного треугольника ABC выполняется равенство  \frac{a}{sinA} =2R,  где a - длина стороны, лежащей против угла А, R - радиус описанной окружности. 

1)

Пусть ∠ KBC= \alpha, а ∠ KCB= \beta

Рассмотрим Δ KBC:

\ \textless \ BKC+\ \textless \ KBC+\ \textless \ KCB=180к

60к+ \alpha + \beta =180к

\alpha + \beta =120к

2)

Δ ABC вписан в окружность, тогда 

\frac{AB}{sin \beta }=2R

\frac{43}{sin \beta } =2R

3)

Δ DBC вписан в окружность, тогда 


\frac{DC}{sin \alpha } =2R

\frac{4}{sin \alpha } =2R

\frac{43}{sin \beta }= \frac{4}{sin \alpha }

\alpha + \beta =120к

\beta =120к- \alpha

\frac{43}{sin (120к- \alpha ) }= \frac{4}{sin \alpha }

43 sin \alpha =4sin(120к- \alpha )

sin (120к- \alpha )=sin 120кcos \alpha -sin \alpha cos120к= \frac{ \sqrt{3} }{2}cos \alpha -sin \alpha *(- \frac{1}{2})=\frac{ \sqrt{3} }{2}cos \alpha + \frac{1}{2}sin \alpha

43sin \alpha =4(\frac{ \sqrt{3} }{2}cos \alpha + \frac{1}{2}sin \alpha)

43sin \alpha =2\sqrt{3} }cos \alpha +2sin \alpha

41sin \alpha =2\sqrt{3} }cos \alpha

(41sin \alpha)^2 =(2\sqrt{3} }cos \alpha)^2

1681sin^2 \alpha =12cos^2 \alpha

1681sin^2 \alpha =12(1-sin^2 \alpha)

1681sin^2 \alpha =12-12sin^2 \alpha

1693sin^2 \alpha =12

sin^2 \alpha = \frac{12}{1693}

sin \alpha = \sqrt{ \frac{12}{1693} }

4)

\frac{4}{sin \alpha } =2R

\frac{4}{ \sqrt{ \frac{12}{1693} } } =2R

\frac{4}{ \frac{2 \sqrt{3} }{ \sqrt{1693} } } =2R

\frac{2 \sqrt{1693} }{{ \sqrt{3} } } =2R

\frac{ \sqrt{1693} }{{ \sqrt{3} } } =R

R= \sqrt{ \frac{1693}{3} }

Вокруг выпуклого четырёхугольника abcd описана окружность. к - точка пересечения диагоналей данного
4,6(88 оценок)
Открыть все ответы
Ответ:
Kozlov24ivan122
Kozlov24ivan122
16.03.2021
Расстояние от точки до прямой находится на перпендикуляре к прямой)))
основания трапеции параллельны, т.е. для них перпендикуляр общий...
этот перпендикуляр будет состоять из двух высот для треугольников,
опирающихся на основания трапеции...
одно основание меньше, другое больше --- это дано)))
треугольники, опирающиеся на основания трапеции подобны --- у них
равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции)))
следовательно, существует коэффициент подобия,
равный отношению сторон, в том числе и оснований трапеции...
k = a / b, a < b ---> k ≠ 1
этот же коэффициент связывает и высоты подобных треугольников,
и получим, что в меньшем треугольнике и высота меньше)))
ЧиТД
4,8(9 оценок)
Ответ:
H1e1l1p
H1e1l1p
16.03.2021
трапеция АВСД, МН-отрезок, ВС=1, АД=6, МН=4, продлеваем боковые стороны до пересечения их в точке О, треугольник АОС подобен треуг.МОН и ВОС по двум равным соответственным углам при основании треугольников, в подобных треугольниках площади относятся как квадраты соответствующих сторон, ВС²/АД²=S треуг.ВОС /S треуг.АОД, 1/36=S ΔВОС/S ΔАОД, S ΔВОС= SΔАОД/36, МН²/АД²=S ΔМОН/S ΔАОД, 16/36=S ΔМОН/S ΔАОД, S ΔМОН=16S ΔАОД/36, S трап.МВСН=S ΔМОН-S ΔВОС=16S ΔАОД/36 - S ΔАОД/36=15S ΔАОД/36, S трапец.АМНД=S ΔАОД - S ΔМОН=S ΔАОД - 15S ΔАОД/36=21S ΔАОД/36, трап.МВСН / трапец.АМНД = (15S ΔАОД/36) / (21S ΔАОД/36)=15/21=5/7
4,6(96 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ