Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).
8.2.
Построим точки A1 и B1 на сторонах BC и AC соответственно так, что BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 : 2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.
8.3.
Пусть O — центр данной окружности, AB — хорда, проходящая через точку P, M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.
8.4.
Пусть R — радиус данной окружности, O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.
8.5.
Пусть R — радиус окружности S, O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса
Ц
R2 – d2/4
с центром O.
8.6.
Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,
SR
EC
= PQ
EC
= BQ
BC
= FR
FC
, т. е. точка S
Із початку координат провести перпендикуляр до прямої
(x/1)=(y+3/-1)=(z+3/-1).
Найдем проекцию точки O ( 0; 0; 0) на заданную прямую L.
Чтобы найти проекцию точки на прямую, проведем через эту точку плоскость, перпендикулярную данной прямой, используя ее направляющий вектор, который будет вектором нормали к плоскости: a = {1; -1; -1} = n .
Получаем: 1*x – 1*y – 1*z = 0.
Тогда искомая проекция (точка N) – это результат пересечения прямой и плоскости. Чтобы найти это пересечение, запишем параметрические уравнения прямой:
x = t,
y = -t – 3,
z = -t – 3.
Подставим их в уравнение плоскости: t – (-t – 3) – 1(-t – 3) = 0,
t + t + 3 + t + 3 = 0,
3t = -6,
t = -6/3 = -2.
Подставим значение параметра t в координаты переменных прямой.
N: x = -2,
y = -(-2) – 3 = -1,
z = -(-2) – 3 = -1.
N(-2; -1; -1) − - проекция точки O на прямую L .
Тогда уравнение перпендикуляра – это уравнение прямой ON.
(x – xO)/(xN – xO) = (y – yO)/(yN – yO) = (z – zO)/(zN – zO),
x/(-2) = y/(-1) = z/(-1).