1. Проекция бокового ребра L на основание равна половине диагонали d основания:
d/2=(a/2)*под корнем 2=(9 под корнем 2/2)*под корнем 2=9
Тогда боковое ребро L равно:
L=(d/2)/cos a=9/(под корнем 3/2)=18/под корнем 3=6 под корнем 3.
б) Для этого надо найти апофему А.
А=под корнем(L²-(a/2)² )=под корнем(108-(12/4))=под корнем 270/2=3 под корнем30/2.
Периметр основания: Р=3а=3*9 под корнем 2=27 под корнем 2
Площадь Sбок боковой поверхности пирамиды равна:
Sбок=(1/2)РА=(1/2)*(27 под корнем 2)*(3 под корнем 30/2)=81 под корнем 15/2 кв.ед
В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см