Дан куб abcda1b1c1d1 с ребром 12. постройте сечение куба плоскостью abc1. постройте сечение куба плоскостью, проходящую через точку m параллельно плоскости abc1 и найдите его периметр, если m принадлежит b1c1, mb = 1/3 b1c1
АД1=4корня из 2АМ=2 корня из 5.треугАВМ=треугМСН (по 2-м углам и стороне: угАМВ=угНМС как вертикальные, угВАМ=угМНС как накрест лежащие при АН секущей и АВ параллельной ДС, ВМ=МС по условию) , отсюда следует что АВ=СН=4, значит СК=2, т. к. это средняя линия треугДД1Н и равна половине ДД1, т. е. 2.и опять по т. Пифагора! треугД1С1К прямоуг, значит Д1К=2 корня из 5 треуг МКС прямоуг, значитМК=2 корня из 2.ВСЕ! Теперь остается сложить все стороны полученного сечения! Р=АД1+Д1К+КМ+МА=4 корня из 5 + 6 корней из 2
Почему на мои вопросы никто не отвечает??!! Две пересекающиеся прямые образуют плоскость, третья же свободно может этой плоскости не принадлежать. Для примера: возьмите лист бумаги, начертите две пересекающиеся прямые на этом листе, теперь в точку пересечения воткните иглу, можете этой иглой повертеть. Пока Вы не положите иглу на лист, она будет прямой, проведенной через точку пересечения двух прямых и не лежать с ними в одной плоскости, то есть таких прямых может быть бесконечное множество. Оси координат тоже пример, но частный.
Высота основания = сторона х (корень3/2) = 2 х корень3 х корень3/2 =3высота основания в правильном треугольнике = медиане, которая в точке пересечения медиан (в данном случае основание высоты пирамиды) делится в отношении 2 : 1 начиная от вершины, т.е от вершины основания до высоты пирамиды расстояние = 3 см /3 части (2+1) =1, 2 части =2 см, треугольник, образованный боковым ребром высотой пирамиды (2см) и частью высоты основания (2 см) прямоугольный, равнобедренный, углы = 90/2=45угол бокового ребра к плоскости основания =45