М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
leylaevloeva
leylaevloeva
21.01.2023 05:12 •  Геометрия

Стороны ав треугольника а б ц равно 17 а сторона ас вдвое больше стороны в сторону bс на 10 сантиметров меньше стороны aс найдите периметр треугольника а б ц

👇
Ответ:
0ananasik0
0ananasik0
21.01.2023
Дано:
АВ=17;
АС вдвое больше, чем АВ;
ВС на 10 см меньше, чем АС;
Найти Р.
Решение.
Пусть АВ=х. Тогда АС=2х (по условию, АС вдвое больше, чем АВ), ВС=2х-10 (из условия).
Р=АВ+ВС+АС.
Р=х+2х+2х-10;
Р=5х-10;
Теперь подставим значение х= 17 см (из условия).
Р=5*17-10;
Р=85-10;
Р=75 (см).
ответ: периметр равен 75 см. 
4,4(32 оценок)
Открыть все ответы
Ответ:
Nastya3748
Nastya3748
21.01.2023

В треугольнике АВС проведена медиана ВN и средняя линия КМ. О-их точка пересечения. Какую часть площади треугольника АВС составляет площадь треугольника ОMN?

Объяснение:

Пусть S(ABC)=a

BN-медиана ⇒ S(ABN)=S(NBC) как имеющие равные основания и одинаковую высоту из точки В. S(ABN)=S(NBC)=1/2*а.

Т.к ВМ=МС ⇒ S(МВN)=S(МСN) как имеющие равные основания и одинаковую высоту из точки N . S(МВN)=S(МСN) =1/2*1/2*а=1/4*а.

KM║АС и М-середина ВС ⇒по т. Фалеса ВО=ОN .

Т.к ВО=ОN ⇒ S(ВМО)=S(ОМN) как имеющие равные основания и одинаковую высоту из точки М . S(ВМО)=S(ОМN) =1/2*1/4*а=1/8а.

Значит  S(ABC) составляет 1/8 часть от S(ABC).


В треугольнике АВС проведена медиана ВN и средняя линия КМ. О-их точка пересечения. Какую часть площ
4,5(46 оценок)
Ответ:
redf0x0
redf0x0
21.01.2023
ответ:

1) 32\sqrt{2} см²; 2) 46 см².

Объяснение:

1) у многоугольника 8 сторон и R = 4 см.

Число сторон в многоугольнике равно числу углов в этом многоугольнике.

\Rightarrow данный многоугольник - восьмиугольный.

Обозначим данный восьмиугольник буквами ABCDE F G H.

Около восьмиугольника ABCDE F G H описана окружность с центром в точке O, по условию.

Проведём диагонали AE, BF, CG, DH..

AO = OD = CO = OE = BO = OF, так как они радиусы описанной около шестиугольника окружности.

Диагонали правильного восьмиугольника делят его на 8 равных равнобедренных треугольников.

\Rightarrow \triangle AOB = \triangle BOC = \triangle COD = \triangle DOE = \triangle EOF = \triangle FOG = \triangle GOH (а они ещё и равнобедренные).

\RightarrowAO = OB = OC = OD = OE = OF = OG = OH, по свойству равнобедренного треугольника. Также эти стороны - радиусы описанной около данного восьмиугольника окружности.

S\triangle AOB = \dfrac{1}{2} \cdot AO \cdot OB \cdot sin(AOB) = \dfrac{1}{2} \cdot 4 \cdot 4 \cdot sin(45^{\circ}) = 2 \cdot 4 \cdot \dfrac{\sqrt{2} }{2} = 4\sqrt{2}см²

\Rightarrow S восьмиугольника =  S \triangle AOB\cdot 8 = 4\sqrt{2} \cdot 8 = 32\sqrt{2} см².

2) у многоугольника 9 сторон и R = 4 см.

Число сторон в многоугольнике равно числу углов в этом многоугольнике.

\Rightarrow данный многоугольник - девятиугольный.

Обозначим данный девятиугольник буквами ABCDE F G H R.

Около девятиугольника ABCD E F G H R описана окружность с центром в точке O.

Соединим центр окружности с вершинами данного девятиугольника.

Отрезки OA, OB, OC, OD, OE, OF, OG, OH, OR - радиусы описанной около девятиугольника окружности, поэтому они равны.

Итак, в данном девятиугольнике 9 равнобедренных равных треугольников:

\triangle AOB, \triangle BOC, \triangle COD, \triangle DOE, \triangle EOF, \triangle FOG, \triangle GOH, \triangle HOR, \triangle ROA.

BO = OA = 4 см (они радиусы описанной окружности).

В окружности всего 360^{\circ}.

Тогда \angle BOA = 360^{\circ} : 9.\\

S \triangle AOB = \dfrac{1}{2} \cdot R \cdot R \cdot sin(\dfrac{360^{\circ}}{9} ). \Rightarrow S девятиугольника = 9 \cdot \dfrac{1}{2} \cdot 4 \cdot 4 \cdot sin(\dfrac{360^{\circ}}{9} )=72 \cdot sin(\dfrac{360^{\circ}}{9} )= 72 \cdot sin(40^{\circ}) \approx 46,28071 \approx 46см²


Дан правильный многоугольник и длина радиуса R окружности, описанной около многоугольника. Определи
Дан правильный многоугольник и длина радиуса R окружности, описанной около многоугольника. Определи
4,7(11 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ