М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ulysses228
Ulysses228
16.09.2020 06:59 •  Геометрия

Впараллелограмме abcd cd=6 ad=8 угол d=120 1)найти углы 2)найти периметр 3)найти длинны отрезков,которые противолежащую сторону перпендикуляра,опушенный из вершины тупого уга

👇
Ответ:
smasyanechka
smasyanechka
16.09.2020
<A+<D=180 внутренние односторонние
<A=<C=180-120=60 противоположные
<D=<B противоположные
AB=CD=6 и BC=AD=8
P=2(AB+BC)=2*(6+8)=2*14=28
DH_|_BC
DH=CD*sin<C=6*√3/2=3√3
4,4(50 оценок)
Открыть все ответы
Ответ:
laikover
laikover
16.09.2020

∠1= 150°; ∠2=30°.

Объяснение:

Задание.

Один из внешних односторонних углов при двух параллельных прямых и секущей на 60 градусов больше среднего арифметического. Найдите углы.

Решение.

Сумма внешних односторонних углов при двух параллельных прямых и секущей равна 180°.

Пусть ∠1= х и ∠2= у - внешние односторонние углы.

Тогда, согласно условию:

х + у = 180 - уравнение 1;

х - 90 = 60 - уравнение 2,

где 90 = (х+у)/2 = 180/2 - среднее арифметическое углов.

Из уравнения (2) находим:

х = 60+90 =150°.

Подставив полученное значение х в первое уравнение, находим у:

150+у=180

у = 180-150 =30°.

Проверка.

Среднее арифметическое углов = (150+30)/2 = 90°;  и больший угол больше среднего арифметического углов на  150- 90=60°, что соответствует условию задачи.

ответ: ∠1= 150°; ∠2=30°.

4,6(94 оценок)
Ответ:
sokolin2
sokolin2
16.09.2020

Доказательства в объяснении.

Объяснение:

1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а  вписанный угол равен половине градусной меры дуги, на которую он опирается.

Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.

2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС.   ∠АСВ = ∠КАВ (доказано выше).

По сумме внутренних углов треугольников АВС и КАВ имеем:

∠АВС = 180 - (∠АСВ + ∠ВАС)  

∠АКВ = 180 - (∠КАВ + ∠АВК)   =>

∠АВС = ∠АКВ.  =>  ∠АВК = ∠АКВ  =>

Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.  

3. Треугольники АСВ и КАВ подобны по  2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).

Площади подобных треугольников относятся как квадрат коэффициента подобия.

Sabc/Sabk = k² = АС²/АВ².

По теореме косинусов в тр-ке АВС найдем:

АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).  

Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>  

к² зависит только от угла α, то есть  

отношение площадей зависит только от величины угла АСВ.

Что и требовалось доказать.

Объяснение:

4,5(99 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ