Объяснение:
Докажем что BC параллельно AD
так как углы BAC и DCA равны по условию, то можно доказать что прямые параллельны следуя из DC AD секущая АС накрест лежащие углы. Следуя из того что AB=BC BA=DC можно доказать что фигура параллелограмм (потому что они и равны и параллельны) Следовательно из свойств параллелограмма можно доказать что угол B=D потому что в параллелограмме противоположенные углы (по диагонали) равны. Надеюсь понятно объяснил, но в решении могут присутствовать темы которые вы возможно еще не проходили!
КН = ВС = 10 см
ΔАВК = ΔCDH по гипотенузе и катету (AB = CD так как трапеция равнобедренная, ВК = СН как высоты трапеции), значит,
AK = HD = (AD - KH)/2 = (18 - 10)/2 = 4 (см)
ΔАВК: ∠АКВ = 90°, по теореме Пифагора
ВК = √(АВ² - АК²) = √(25 - 16) = √9 = 3 (см)
Sabcd = (AD + BC)/2 · BK = (18 + 10)/2 · 3 = 14 · 3 = 42 (см²)