Можно задать встречный вопрос: какая единица измерения была первой? может быть радиан придумали раньше... угол в 1 радиан (от слова радиус) --это такой центральный угол окружности, который вырезает из окружности дугу, равную радиусу (вне зависимости от длины радиуса... это всегда один и тот же угол)) мне кажется, что много вычислявшие египтяне просто заметили некоторую закономерность, верную для любой окружности: если длину окружности разделить на ее диаметр, то получится всегда одно и то же число, примерно равное 3.14... аналогичный вопрос: почему градусов именно 360 в окружности, не 10, не 100 (что было бы логичнее при десятичной системе счисления...)
Нужен единичный отрезок. Может быть получен делением отрезка по теореме Фалеса.
1) Гипотенуза треугольника с катетами 1 и 2 равна √5 (по теореме Пифагора)
2) Высота из прямого угла есть среднее пропорциональное проекций катетов на гипотенузу, h=√(AD*DB)
- достраиваем к отрезку AD=5 отрезок DB=1 на одной прямой
- строим окружность на гипотенузе AB
- строим перпендикуляр к AB из точки D
- пересечение перпендикуляра и окружности - C
Вписанный угол ACB - прямой, так как опирается на диаметр. CD - высота из прямого угла.
CD =√(AD*DB) =√(5*1) =√5