Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
1. ΔАОВ: ∠АОВ = 90°, АВ = АО/ cos60° = 2 см АВ = АС = 2 см ΔАВС: ∠САВ = 90°, по теореме Пифагора ВС = √(АВ² + АС²) = √(4 + 4) = 2√2 см
2. ΔАВС равносторонний, так как АВ = АС = 2 см и ∠ВАС = 60°, ⇒ ВС = 2 см ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС. ΔОВС - прямоугольный, равнобедренный, значит ВС = ОВ√2 ОВ = ВС/√2 = 2/√2 = √2 см ΔАОВ: по теореме Пифагора АО = √(АВ² - ОВ) = √(4 - 2) = √2 см
3. ΔАВС равносторонний, так как АВ = АС и ∠ВАС = 60°, ⇒ ВС = АВ = АС = х ΔАОВ = ΔАОС по катету и гипотенузе (АО - общий катет, АВ = АС по условию), ⇒ ОВ = ОС. ΔОВС - прямоугольный, равнобедренный, значит ВС = ОВ√2 ОВ = ВС/√2 = х/√2 ΔАОВ: cos∠ABO = OB/AB = x/√2 / x = 1/√2 = √2/2, ⇒ ∠ABO = 45° ∠ACO = ∠ABO = 45° так как ΔАОВ = ΔАОС.
2^3=8
Значит одно ребро рав 2 см
грань: 2*4=8