Диагональ равносторонней трапеции равна большей основе и образует с ней угол 40 градусов. найдите углы трапеции(діагональ рівнобічної трапеції дорівнює більшій основі та утворює з нею кут 40 градусів. знайдіть кути трапеції)
Это же элементарно! Диагональ трапеции, её большее основание и боковая сторона образуют равнобедренный треугольник с углом при вершине 40°. Угол при основании этого треугольника является углом при большем основании трапеции. Он равен (180° - 40°) : 2 = 70°. Углы прилежащие к одной из боковых сторон трапеции являются внутренними односторонними при двух параллельных прямых (основаниях трапеции). Их сумма равна 180°. То есть угол при меньшем основании трапеции равен 180° - 70° = 110°. Остальные два угла трапеции тоже равны 110° и 70° в силу того, что трапеция равнобочная.
Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
Осевое сечение - это сечение геометрической фигуры, плоскость которой проходит через ось данной фигуры. Сечение конуса, которое проходит через его ось - равнобедренный треугольник, потому как образующие образуют боковые стороны этого треугольника. Имеем равнобедренный треугольник ABC: AB = BC = 2*sqrt(3). CO - высота конуса, которая является и медианой, и биссектрисой в равнобедренном треугольнике, опущенная на основу. Следовательно, угол BCO = углу ACO = 60 градусов. Из прямоугольного треугольника BOC: угол CBO = 90 - 60 = 30 градусов. Катет, который лежит против угла 30 градусов, равен половине гипотенузы: OB = CB/2, OB = sqrt(3) = R. Найдем высоту конуса. Из теоремы Пифагора: CO^2 = CB^2 - OB^2, CO^2 = 12 - 3 = 9, CO = 3 см = H. Площадь основания конуса - это площадь окружности: S = pi*R^2, S = 3*pi см^2. Объем конуса равен (S*H)/3, V = (3*3pi)/3 = 3pi см^3.
Диагональ трапеции, её большее основание и боковая сторона образуют равнобедренный треугольник с углом при вершине 40°. Угол при основании этого треугольника является углом при большем основании трапеции. Он равен (180° - 40°) : 2 = 70°.
Углы прилежащие к одной из боковых сторон трапеции являются внутренними односторонними при двух параллельных прямых (основаниях трапеции). Их сумма равна 180°. То есть угол при меньшем основании трапеции равен 180° - 70° = 110°.
Остальные два угла трапеции тоже равны 110° и 70° в силу того, что трапеция равнобочная.