№1:
. №2: 
.
№1.
Пусть
, тогда
- секущая.
Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна
.
, по условию.
и
- односторонние углы 
№2.
Обозначим данные прямые буквами 
Пусть
- секущая прямых
и 
Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".
и
- накрест лежащие при пересечении
и
секущей
, однако
.

и
- не параллельны.
============================================================
Свойство: "Вертикальные углы равны".
Свойство: "Сумма смежных углов равна
".
Рассмотрим углы, образовавшиеся при пересечении прямых
и 
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
===========================================================
Рассмотрим углы, образовавшиеся при пересечении прямых
и
.
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.

1)Второй признак равенства треугольников. Теорема. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. Третий признак равенства треугольников.
2)периметр - это сумма длин сторон какой-либо геометрической фигуры. Полупериметр - половина периметра.
3)Два треугольника, которые можно совместить наложением, называются равными. ... Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
4)Высотой треугольника, опущенной из данной вершины, называется перпендикуляр, проведённый из этой вершины к прямой, которая содержит противоположную сторону треугольника. * Прямые, содержащие высоты треугольника, пересекаются в одной точке (которая называется ортоцентром данного треугольника).
Объяснение:
в нем угол С равен 30 гр.
згачит угол CAO равен 60 гр. (90-30)
теорема: катет лежащий против угла в 30 градусов равен половине гипотенузы.
так ОА(катет) лежит напротив угла в 30градусов, значит ОА это половина АС(гипотенуза)
таким образом АС=2ОА=30.
АС:АВ=2:3
возьмем 1 часть за х
так, АС это 2х,
АВ это 3х.
получаем уравнения:
1)АС=2х.
2)АВ=3х.
АС=30, значит из 1) находим АС:
30=2х
отсюда х=15.
из 2) находим АВ:
АВ=3х
АВ=3*15
АВ=45.
ответ: АС= 30; АВ=45.