Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см
а)Так как АВ = ВС , то треугольник АВС - равнобедренный, ВТ - высота, значит медиана и биссектриса. (хотя в дано почему то не прописано, про ВТ) Треугольник АВТ - прямоугольный. Против угла 30 градусов лежит катет в 2 раза меньше гипотенузы, значит АВ=ВС = 4*2=8 см.
Сумма двух сторон треугольника больше третьей стороны (неравенство треугольника), значит в из треугольника АВС АС < АВ + ВС AC < 16см
из треугольника АВТ АВ <АТ + ВТ или АТ>АВ - ВТ АТ > 4 см => АС > 8 см
8см < АС < 16 см
б)Если провести отрезок из точки Т к середине АВ (например точке М) то он разделит АВ на отрезки равные по 4 см. То есть треугольник МВТ - равнобедренный и углы М и Т равны. Найдем их М =Т = (180-В):2=(180-60);2=60 - Значит треугольник МВТ - равносторонний, значит ТМ = 4 см, Аналогично можно доказать что отрезок ТК (К - середина ВС) тоже 4 см. Значит их сумма равна 8 см.
Объяснение:
b будет равно -1