Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Вершины треугольника - это концы соответствующих векторов. Пусть вектор а = вектор ВС, вектор b=вектор АС и вектор с=векторАВ. Найдем координаты векторов. Координаты вектора равны разности соответствующих координат точек его конца и начала. Тогда вектор а(Хс-Хb;Yc-Yb)=a(0-14;14-12)=a(-14;2). Вектор b(Хс-Хa;Yc-Ya)=b(0-(-2);14-0)=b(2;14). Вектор c (Хb-Хa;Yb-Ya)=с(14-(-2);12-0)=с(16;12). Найдем длины сторон треугольника (модули векторов а, b и с). Модуль или длина вектора: |a|=√(Хa²+Ya²). Тогда |a|=√(Хa²+Ya²)=√(196+4)=10√2. |b|=√(Хb²+Yb²)=√(4+196)=10√2. |c|=√(Хc²+Yc²)=√(286+144)=20. Формула радиуса описанной окружности: R=a*b*c/4S, где a,b,c -стороны треугольника, р - его полупериметр. В нашем случае полупериметр равен 10+10√2. Тогда по формуле Герона: S=√[(10+10√2)*10*10*[(10√2)²-10²)] или S=100. R=a*b*c/4S=(10√2*10√2*20)/(4*100)=10. Площадь круга равна Sк=πR². В нашем случае Sк=π*100. ответ: S=100π.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²