Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.
1) пусть x - это катет в левой части трапеции с острым углом 30°
пусть y - это катет в правой части трапеции с острым углом 60°
на них приходится 15 - 7 = 8см, следовательно, x + y = 8
выясним, как связаны x и y
tg60 = h / y => y = h / tg60 = h / √3
tg30 = h / x => x = h / tg30 = 3h / √3
заметим, что x > y в 3 раза
пусть x = 3a, y = a
тогда 3a + a = 8,
a = 2
следовательно, x = 6, y = 2
теперь через тот же тангенс найдем высоту трапеции:
tg60 = h / y => h = tg60 y = 2√3.
2) по теореме Пифагора найдем диагонали трапеции
d1 = sqrt(9² + (2√3)²) = √93
d2 = sqrt(13² + (2√3)²) = √181