В условии ошибка. Нужно доказать равенство ML = LK
У треугольников и углы равны, так как углы при основании равнобедренного треугольника равны. Следовательно, по двум сторонам и углу между ними. У равных треугольников соответствующие элементы (стороны, углы) равны, т.е.
Каждая из высот, проведенных к боковым сторонам из вершин основания, образуют с основанием прямоугольные треугольники. У этих треугольников основание будет являться гипотенузой, а т. к. углы при основании равнобедренного треугольника равны (свойство углов при основании равнобедренного треугольника), то эти прямоугольные треугольники равны (по признаку равенства прямоугольных треугольников по гипотенузе и острому углу). Т. .к треугольники равны, то равны и все их элементы, а значит, и катеты (которые являются нужными высотами)
Построим равнобедренный треугольник АВС с основанием АВ. Проведем высоты АД и ВЕ. Рассмотрим треугольники ACД и BCЕ. AC=BC (как боковые стороны равнобедренного треугольника), угол АСВ - общий, углы AДC=BЕC=90 (так как AД и BЕ высоты). Сумма углов треугольника равна 180 градусам. В треугольнике ACД угол CAД=180-(AДC+АСВ)=180 - 90 - АCВ=90-АСВ градусов. В треугольнике BCЕ угол CBЕ=180- (BЕC+АСВ)=180- 90 -АСВ=90-АCВ градусов. Значит: углы CAД=CBЕ. Следовательно, треугольники ACД и BCЕ равны (по стороне и двум прилежащим к ней углам). Так как треугольники ACД и BCЕ равны то и соответствующие стороны равны: AД=BЕ.
В условии ошибка. Нужно доказать равенство ML = LK
У треугольников
и
углы
равны, так как углы при основании равнобедренного треугольника равны. Следовательно,
по двум сторонам и углу между ними. У равных треугольников соответствующие элементы (стороны, углы) равны, т.е. 