1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²
ответ:20см 20см 24см
Объяснение:
Дано:
О - центр вписаного у ∆АВС. ∆АВС - рівнобедрений,
АВ = ВС. N, К, Р - точки дотику. ВК : КС = 2 : 3. Р∆АВС = 70 см.
Знайти: АВ, ВС, АС.
Розв'язання:
За умовою ВК : КС = 2 : 3, тоді ВК = 2х (см), КС = 3х (см).
За властивістю дотичних до кола, проведених з однієї точки, маємо:
ВК = BN = 2х (см), КС = PC = 3х (см).
За аксіомою вимірювання відрізків маємо:
ВС = ВК + КС = 2х + 3х = 5х (см). АВ = ВС = 5х (см).
Р - середина відрізка AC, PC = АР = 3x (см).
АС = PC + АР; АС = 3х + 3х = 6х (см).
Р∆АВС = АВ + ВС + АС: 5х + 5х + 6х = 70; 16х = 70; х = 4.
АВ = ВС = 5 • 4 = 20 (см); АС = 6 • 4 = 24 (см).
Biдповідь: 20 см, 20 см, 24 см.
скинь , где что нужно