Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
Объяснение:
Длина дорожки 1200 м. Гена встретил Артёма на расстоянии 200 м от В, когда ехал в обратную сторону.
То есть Гена проехал 1200 + 20 = 1400 м, а Артём 1200 - 200 = 1000 м.
1) Да, Скорость Гены в 1,4 раза больше скорости Артёма.
Если они будут также двигаться дальше, то произойдет следующее.
К тому моменту, когда Артём проедет последние 200 м до В, Гена проедет 1,4*200 = 280 м и будет на расстоянии 200 + 280 = 480 м от B и 1200 - 480 = 720 м от А. В это время Артём доедет до В и поедет к А.
Когда Гена проедет 720 м до А, Артем проедет 720/1,4 = 514,3 м от В и окажется на расстоянии 1200 - 514,3 = 685,7 м от А.
После этого Гене еще надо вернуться обратно.
2) Нет, они встретятся далеко не в середине дорожки.
3) Если Артём ехал со скоростью
vA = 10 км/ч = 10000 м/60 мин = 1000/6 м/мин,
То Гена ехал со скоростью:
vG = 1,4*10 = 14 км/ч = 14000/60 = 1400/6 м/мин.
Значит, дорожку в 1200 м Артём проезжал за:
tA = 1200 : (1000/6) = 1200*6/1000 = 7,2 мин
А Гена ту же дорожку проезжал за:
tG = 1200 : (1400/6) = 12*6/14 ≈ 5,14 мин.
Нам надо найти время, за которое они оба проедут 1200*n м и окажутся одновременно в В. И сколько раз они за это время встретятся.
Представим, что они едут по прямой и найдем, через сколько времени они окажутся на расстоянии 1200 м друг от друга.
Каждый раз, когда Артём проезжает 1000 м, Гена проезжает 1400 м.
Гена_ | 1400 | 2800 | 4200 | 5600 | 7000 | 8400
Артём | 1000 | 2000 | 3000 | 4000 | 5000 | 6000
Разн._ | 400 | _800 | _1200 | 1600 | 2000 | 2400
Артем проедет 6000 = 5*1200 = 5 кругов, а Гена 8400 = 7*1200 = 7 кругов.
И они встретятся 6 раз.
Это произойдет через 5*7,2 = 36 минут.
Плюс 6 минут на остановки, получается 36 + 6 = 42 мин.
3) Да, тренировка закончилась через 42 минуты.