а)
проекция Точки A на плоскость (A1B1C1)=A1, проекция точки D=D1, значит проекция отрезка AD=A1D1.
Отрезок A1D1║B1C1 из свойств правильного шестиугольника, и A1D1║AD так как плоскость (ABC)║(A1B1C1) значит AD║B1C1 Ч.Т.Д.
б)
Рассмотрим треугольник A1B1C1, опустим высоту A1H на основание B1C1, AH Также будет ⊥B1C1 по теореме о трех перпендикулярах, значит AH искомое расстояние.
AA1 будет ⊥A1H так-как он ⊥ плоскости (A1B1C1).
найдем A1H методом площадей в треугольнике A1B1C1.
$$\begin{lgathered}S=\frac{1}{2} A_1B_1*B_1C_1*sin(120)=\frac{1}{2} B_1C_1*A_1H\\a^2*sin(120)=a*A_1H\\A_1H=a*sin(180-60)=a*sin(60)=\frac{a\sqrt{3}}{2}\end{lgathered}$$
A1H также можно было найти рассмотрев треугольник A1BH, сказав что A1H=A1B1*sin(60)
теперь по теореме пифагора найдем AH:
$$AH=\sqrt{A_1H^2+AA_1^2}=\sqrt{\frac{4a^2}{4}+\frac{3a^2}{4}}=\frac{a\sqrt{7}}{2}$$
ответ: $$AH=\frac{a\sqrt{7}}{4}$$
Обозначим начало наклонной А, конец наклонной В ( точка пересечения с плоскостью α).
Опустим из А перпендикуляр на плоскость α.
ВС- проекция наклонной а.
АС⊥ВС.
Угол АВС=45°
Прямую b обозначим ВК; угол АВК=60°
Рассмотрим треугольник АВС.
Так как угол АВС=45°, то угол ВАС=45°,
треугольник АВС прямоугольный равнобедренный.
АС=ВС=а*sin(45°)=(a√2):2.
Треугольник АВК прямоугольный.
ВК=а*cos(60°)=а:2
Треугольник ВКС - прямоугольный с гипотенузой ВС
cos ∠ KBC=BК:ВС=(а:2):(a√2):2=1:√2. Умножив числитель и знаменатель на √2, получим
cos ∠ KBC=√2):2. Это косинус 45°
2)38:2=19-длина отрезков с краю
3)19:2=9,5- длина до середины отрезков с краю.
4)9.5+9.5+22=41-расстояние между серединами отрезков.