М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sasha210803
sasha210803
10.08.2020 19:23 •  Геометрия

Сумма средних линий треугольник равна 11 см . найдите периметр этого треугольника

👇
Ответ:
ivansivalov
ivansivalov
10.08.2020

Средняя линия треугольника - отрезок, соединяющий середины двух сторон. Средняя линия треугольника параллельна третьей стороне и равна половине этой стороны.

Пусть а, b, c -стороны треугольника. Среднии линии соответственно а/2, b/2, c/2.

а/2+b/2+c/2=11 см

Р=а+b+c=2*(а/2+b/2+c/2)

Р=2*11=22 (см)

ответ: периметр треугольника равен 22 см.

4,4(94 оценок)
Ответ:
Markys1555
Markys1555
10.08.2020
Периметр =2* сумма средних линий
p=2S=2*11=22
ответ : 22
4,7(64 оценок)
Открыть все ответы
Ответ:
bazakechova566
bazakechova566
10.08.2020

Пусть SABCD — четырёхугольная пирамида, в основании которой ромб ABCD. Меньшая диагональ ромба BD = a и острый угол \angle BAD = \alpha.\ SO высота пирамиды, значит, SO \bot (ABCD), следовательно SO \bot OK, так как OK \in (ABCD),\ OK — проекция SK на плоскость (ABCD),\ OK \bot CD ⇒ по теореме о трёх перпендикуляров (ТТП) SK \bot CD, следовательно, \angle SKO = \beta — линейный угол двугранного угла при ребре CD; так как все двугранные углы при основании равны, то точка О — центр вписанной окружности, то есть OK = r.

Найти: 1) \ S_{_{\Pi}} - ? \ 2) \ SO - ?

Решение. Ромб ABCD состоит из четырёх равных прямоугольных треугольников: \triangle AOD = \triangle AOB = \triangle BOC = \triangle COD.

Рассмотрим \triangle AOD (\angle AOD = 90^{\circ}):

OD = \dfrac{BD}{2} = \dfrac{a}{2}

\angle OAD = \dfrac{\angle BAD}{2} = \dfrac{\alpha}{2}

\text{sin} \dfrac{\alpha}{2} = \dfrac{OD}{AD} \Rightarrow AD = \dfrac{OD}{\text{sin} \dfrac{\alpha}{2}} = \dfrac{a}{2 \text{sin} \dfrac{\alpha}{2}}

\text{tg} \dfrac{\alpha}{2} = \dfrac{OD}{AO} \Rightarrow AO = \dfrac{OD}{\text{tg} \dfrac{\alpha}{2}} = \dfrac{a}{2 \text{tg} \dfrac{\alpha}{2}}

Значит, диагональ AC = 2AO = \dfrac{2a}{2 \text{tg} \dfrac{\alpha}{2}} = \dfrac{a}{\text{tg} \dfrac{\alpha}{2}}

Рассмотрим \triangle COD (\angle COD = 90^{\circ}):

r = OK = \dfrac{CO \ \cdotp OD}{CD} = \dfrac{\dfrac{a}{2 \text{tg} \dfrac{\alpha}{2}} \ \cdotp \dfrac{a}{2}}{\dfrac{a}{2 \text{sin} \dfrac{\alpha}{2}}} = \dfrac{a^{2} \ \cdotp 2 \text{sin} \dfrac{\alpha}{2}}{4a \ \text{tg} \dfrac{\alpha}{2}} = \dfrac{a \ \text{cos} \dfrac{ \alpha}{2}}{2}

Высота ромба BM = 2OK = \dfrac{2a \ \text{cos} \dfrac{\alpha}{2} }{2} = a \ \text{cos} \dfrac{\alpha}{2}

Площадь основания пирамиды S_{_{\text{O}}} = BO \ \cdotp CD = a \ \text{cos} \dfrac{\alpha}{2} \ \cdotp \dfrac{a}{2 \text{sin} \dfrac{\alpha}{2}} = \dfrac{a^{2} \ \text{cos} \dfrac{\alpha}{2}}{2 \text{sin} \dfrac{\alpha}{2}}} = \dfrac{a^{2} \ \text{ctg} \dfrac{\alpha}{2}}{2}

Рассмотрим \triangle SOK (\angle SOK = 90^{\circ}):

\text{tg} \beta = \dfrac{SO}{OK} \Rightarrow SO = OK \text{tg} \beta = \dfrac{a \ \text{cos} \dfrac{ \alpha}{2} \text{tg} \beta}{2}

\text{cos}\beta = \dfrac{OK}{SK} \Rightarrow SK = \dfrac{OK}{\text{cos}\beta} = \dfrac{a \ \text{cos} \dfrac{ \alpha}{2}}{2 \text{cos}\beta}

Определим площадь треугольника SDC:

S_{_{\triangle SDC}} = \dfrac{SK \ \cdotp CD}{2} = \dfrac{a \ \text{cos} \dfrac{ \alpha}{2} \ \cdotp a}{2 \ \cdotp 2 \text{cos}\beta \ \cdotp 2 \text{sin} \dfrac{\alpha}{2}}} = \dfrac{a^{2} \ \text{cos} \dfrac{ \alpha}{2}}{8\text{cos}\beta \ \text{sin} \dfrac{\alpha}{2}} = \dfrac{a^{2} \text{ctg} \dfrac{\alpha}{2}}{8\text{cos}\beta}

Из-за того, что у ромба все стороны равны и все двугранные углы при основании равны, то все боковые грани пирамиды будут тоже равны. Следовательно, площадь боковой поверхности S_{_{\text{B}}} = 4S_{_{\triangle SDC}} = \dfrac{4a^{2} \text{ctg} \dfrac{\alpha}{2}}{8\text{cos}\beta} = \dfrac{a^{2} \text{ctg} \dfrac{\alpha}{2}}{2\text{cos}\beta}

Теперь, зная площадь основания и боковой поверхности пирамиды можно найти площадь полной поверхности:

S_{_{\Pi}} = S_{_{\text{O}}} + S_{_{\text{B}}} = \dfrac{a^{2} \ \text{ctg} \dfrac{\alpha}{2}}{2} + \dfrac{a^{2} \text{ctg} \dfrac{\alpha}{2}}{2\text{cos}\beta} = \dfrac{a^{2} \ \text{ctg} \dfrac{\alpha}{2} (\text{cos} \beta + 1)}{2\text{cos} \beta}

ответ: площадь полной поверхности пирамиды равна \dfrac{a^{2} \ \text{ctg} \dfrac{\alpha}{2} (\text{cos} \beta + 1)}{2\text{cos} \beta}; высота пирамиды равна \dfrac{a \ \text{cos} \dfrac{ \alpha}{2} \text{tg} \beta}{2}.


Нужна основанием четырёхугольной пирамиды является ромб с острым углом α и меньшей диагональю а. все
4,7(58 оценок)
Ответ:
alesyamorozova
alesyamorozova
10.08.2020

В правильной треугольной пирамиде вершина проецируется в центр основания - правильного треугольника. Этот центр делит высоту основания в отношении 2:1, считая от вершины треугольника. Высота треугольника равна (√3/2)*а, где а - сторона треугольника. В нашем случае h=(√3/2)*9. Тогда АО = (2/3)*h - это катет прямоугольного треугольника, образованного высотой пирамиды (второй катет) и ребром пирамиды (гипотенуза). АО=(√3*9/2)*(2/3) = 3√3. По Пифагору найдем высоту пирамиды: Н=√(SA²-(АО)²) или Н=√(36-27) = 3см. Это ответ.


Знаючи сторону основи а=9см і бічне ребро б=6см, знайдіть висоту правильної трикутної піраміди зная
4,4(90 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ