Сумма противолежащих углов равна 180 градусов , т.к трапеция равнобокая. Угла обозначаем A и B. Тогда можно получить систему уравнений. Тогда: А+B=180 , А-В=40 , Решаем и получается: 2*А=180+40=220. И получается ,что угл А=110 градусов , а угл В=70 градусов
Из т. A опустим перпендикуляр на прямую DE (см. прикрепленный рисунок). Пусть AH - этот перпендикуляр, (длину которого и требуется найти в задаче). Тогда AH⊥DE. Проведем отрезок CH в плоскости CDE. Т.к. по условию AC⊥CDE, то AH - наклонная, а AC - перпендикуляр (к плоскости CDE). И AH⊥DE (по построению), тогда по теореме обратной теореме "о трёх перпендикулярах", получаем, что DE⊥CH. Таким образом CH - это высота прямоугольного равнобедренного треугольника CDE. Найдем CH. Для этого найдем DE по т. Пифагора: DE² = CE² + CD² = (12√2)² + (12√2)² = 2*12² + 2*12² = 4*12², DE = √(4*12²) = 2*12. Т.к. треугольник CDE - равнобедренный, то его высота CH является и медианой. Поэтому DH = EH = DE/2 = 2*12/2 = 12. По т. Пифагора для ΔCDH. CH² = CD² - DH² = (12√2)² - 12² = 2*12² - 12² = 12², CH = √(12²) = 12. Т.к. AC⊥пл.CDE, то AC⊥CH, и ΔACH прямоугольный, ∠ACH = 90°. По т. Пифагора для ΔACH: AH² = CH² + AC² = 12² + 35² = 144 + 1225 = 1369, AH = √(1369) = 37. ответ. 37 дм.
Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.при каждой вершине треугольника есть два внешних угла. чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. таким образом получаем 6 внешних углов. внешние углы каждой пары при данной вершины равны между собой (как вертикальные): дано: ∆авс, ∠1 — внешний угол при вершине с.
доказать: ∠1=∠а+∠в. так как сумма углов треугольника равна 180º, ∠а+∠в+∠с=180º.следовательно, ∠с=180º-(∠а+∠в). ∠1 и ∠с (∠асв) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠с=180º-(180º-(∠а+∠в))=180º-180º+(∠а+∠в)=∠а+∠в.
Пусть х один из углов, тогда второй - х+40
Составим уравнение: х+х+40=180
2х=140
х=70 градусов - меньший угол
Тогда 70+40 = 110 градусов - второй, больший угол