Треугольник образуется соединением отрезками трех точек, не лежащих на одной прямой. При этом точки называются вершинами треугольника, а отрезки - его сторонами. Площадь тругольника по формуле Герона равна корню из произведения разностей полупериметра треугольника (p) и каждой из его сторон (a, b, c)
Найдите площадь прямоугольного треугольника с гипотенузой 10 и углом 15°∘ ----- Площадь прямоугольного треугольника можно найти произведением его катетов, деленному на 2, можно и произведением сторон на синус угла между ними, деленному на 2. Пусть в ∆ АВС угол С=90°, угол В=15º, гипотенуза АВ=10 по условию Тогда ВС=АВ*cos15°= ≈10*0,9659=9,659 sin 15º=≈0,2588 S=10*9,659*0,2588 :2= ≈12,4997 (ед. площади) ----------- Это приближенное значение площади данного треугольника. Но можно найти точное. Для этого применим точное значение косинуса и синуса 15º ( оно есть в таблицах Этот вариант решения дан в приложении.
Пусть дан треугольник ABC, углы А, B, C, стороны a, b, c;
Теорема синусов: a/sinA = b/sinB = c/sinC
Теорема косинусов: a^2 = b^2 + c^2 - 2*b*c*cosA; (ну и также для остальных углов) (короче, похожа на теорему Пифагора, только обобщённую на произвольный треугольник).
Ну вот. Пусть те стороны равны 3х и 8х. Тогда пиши теорему косинусов: 441= 9*х^2+64*x^2-48*x^2*0,5=49*x^2; x^2 = 9 =>x=3. Тогда две другие стороны равны 9 и 24 соответственно. Далее по теореме синусов можно было бы найти углы - но этого не требуется.