1. пусть апофема l и угол между апофемой и плоскостью основания в 30° тогда проекция апофемы на плоскость основания, она же равна радиусу вписанной в основание окружности, r = l*cos(30°) = l√3/2 Радиус вписанной окружности равностороннего треугольника (см рисунок) относится к половине основания пирамиды как tg(30) r/(a/2) = tg(30°) = 1/√3 2r√3=a 2*l√3/2*√3=a 3l = a l = 1/3a Апофема равна одной трети основания Площадь боковой поверхности S = 3*1/2*l*a = 1/2 a^2 = 50 см^2 1/2 a^2 = 50 a^2 = 100 a = 10 см 2 длина малой диагонали основания по теореме косинусов l^2 = 1^2+(2√2)^2-2*1*2√2*cos(45) = 5 l = √5 Если наименьшее диагональное сечение опирается на эту диагональ то высота параллелепипеда l*h = √15 h = √3 Объём параллелепипеда V=1*2√2*sin(45)*h = 2√3
Расстояние от точки до прямой находится на перпендикуляре к прямой))) основания трапеции параллельны, т.е. для них перпендикуляр общий... этот перпендикуляр будет состоять из двух высот для треугольников, опирающихся на основания трапеции... одно основание меньше, другое больше --- это дано))) треугольники, опирающиеся на основания трапеции подобны --- у них равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции))) следовательно, существует коэффициент подобия, равный отношению сторон, в том числе и оснований трапеции... k = a / b, a < b ---> k ≠ 1 этот же коэффициент связывает и высоты подобных треугольников, и получим, что в меньшем треугольнике и высота меньше))) ЧиТД