Пусть у меньшей окружности радиус R и расстояние от вершины угла до центра D; а у большой k*R и k*D; - ясно, что эти расстояния пропорциональны. k нужно найти из отношения площадей. Условие, что окружности касаются, означает, что k*D - D = R + k*R; то есть R/D = (k* - 1)/(k + 1); легко видеть, что R/D это синус половины угла, который надо найти, так как центры окружности лежат на биссектрисе. Что касается величины к, то её нетрудно подобрать, k^2 = 97 + 56√3; Легко видеть, что k^2 = 49 + 2*7*4√3 + 48 = (7 + 4√3)^2; то есть k = 7 + 4√3; технически задача уже решена. sin(α/2) = (7 + 4√3 - 1)/(7 + 4√3 +1) = √3/2; все преобразования сделайте сами. То есть α/2 = 60°; α = 120°;
Обозначим вершины равнобедренного треугольника A,B, и C с основанием AC. По условию основание на 3 см меньше боковой стороны, значит боковая сторона на 3 см больше основания. Обозначим основание за x. Тогда боковая сторона будет равна (x+3)см. Составим и решим уравнение:x+(x+3)+(x+3)=18;x+x+3+x+3=18;3x+6=18;3x=12;x=12:3;x=4. Мы нашли основание AC, оно равно 4 см. Периметр равнобедренного треугольника равен:боковая сторона+боковая сторона+основание. Значит, сумма длин боковых сторон равна:18-основание AC=18-4=14.