М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
draganmarta
draganmarta
25.02.2023 11:19 •  Геометрия

Какие утверждения верны? 1)существуют три прямые,которые проходят через одну точку.2)боковые стороны любой трапеции равны.3)сумма углов равнобедренного треугольника равна 180 градусов

👇
Ответ:
olka11022000
olka11022000
25.02.2023
1)да 2)нет, только равнобедренная трапеция имеет равные боковые стороны 3)да
4,5(24 оценок)
Ответ:
annajeon58
annajeon58
25.02.2023
1*. Верно. Через одну точку можно провести бесконечно много прямых.
2. Не верно. Длина боковых сторон может быть любой.
3. Верно. С одним замечанием, сумма углов ЛЮБОГО треугольника равна 180 градусов. 
4,6(73 оценок)
Открыть все ответы
Ответ:
mangle56
mangle56
25.02.2023

дана трапеция ABCD

EM - средняя линия

пересекает диагонали в точках К и N

AC и BD - диагонали

 

из свойств средней линии трапеции: EM||BC||AD

CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.

AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.

Следовательно: AK=CK и DN=BN

 

можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.

4,7(81 оценок)
Ответ:
pirmnastia
pirmnastia
25.02.2023

дана трапеция ABCD

EM - средняя линия

пересекает диагонали в точках К и N

AC и BD - диагонали

 

из свойств средней линии трапеции: EM||BC||AD

CM=MD и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку N.

AE=EM и EM||BC, тогда по теореме Фалеса ( если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне) EM проходит через точку K.

Следовательно: AK=CK и DN=BN

 

можно также доказать через треугольники ABC и DCB - средняя линия трапеции будет средней линией этих треугольников. Средняя линия треугольника делит стороны пополам, значит диагонали пересекаются пополам.

4,4(25 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ