Sтрап=1/2*(AD+BC)*h надо найти h что бы ее найти нужно рассмотреть треугольник ABK угол A=30 надо найти противолежащий катет => sin30=x/AB x=3=h Sтрап= 1/2*8*3= 12
Вариант решения Треугольники ВВ₁С и СС₁В - прямоугольные, т.к. высоты пересекаются с соответствующими сторонами под прямым углом. Вокруг этих треугольников можно описать одну окружность, т.к. гипотенуза ВС у них - общая, и радиус этой окружности будет одним и тем же для описанной вокруг каждого треугольника окружности. Т.е. точки С и В₁ будут лежать на одной и той же окружности. Углы ВВ₁С₁ И ВСС₁ - вписанные и опираются на одну и ту же дугу, стягиваемую хордой С₁В. Вписанные углы, опирающиеся на одну дугу - равны, ч.т.д.
Диагонали ромба делят его на четыре равных прямоугольных треугольника, поэтому достаточно найти площадь одного из них (см. рисунок). В треугольнике AOB высота OH делит гипотенузу AB на отрезки, равные 1 и 4. Известно, что высота прямоугольного треугольника, опущенная на гипотенузу, равна среднему геометрическому длин отрезков, на которые она делит гипотенузу. (Этот факт, насколько мне известно, не нужно доказывать, но это легко сделать, так как треугольники AOH и BOH подобны, поэтому AH/OH=OH/BH). Тогда OH=√AH*BH=2. Зная длину гипотенузы и длину высоты, опущенной на неё, можно найти площадь треугольника, которая равна 1/2*(4+1)*2=5. А площадь ромба, то есть площадь 4 таких треугольников, равна 5*4=20.
надо найти h
что бы ее найти нужно рассмотреть треугольник ABK
угол A=30 надо найти противолежащий катет => sin30=x/AB
x=3=h
Sтрап= 1/2*8*3= 12