поскольку один из углов равен 45°, то другой угол будет равен
90° - 45° = 45°. Два угла равны по 45°, а если два угла в треугольнике равны, то он равнобедренный. Таким образом, оба катета в треугольнике равны. Найдём их.
Пусть каждый катет равен x, по теореме Пифагора:
(3√2)² = x² + x²
2x² = 18
x² = 9
x1 = 3; x2 = -3 - данный корень не удовлетворяет условию, так как длина не может быть выражена отрицательным числом.
Таким образом, оба катета равны по 3 см.
Площадь прямоугольного треугольника равна половине произведения его катетов.
S = 0.5 * 3 * 3 = 9 * 0.5 = 4.5
Объяснение:
52) ΔTMO=ΔQOM по стороне и двум прилеащим углам:
MO - их общая сторона, ∠TMO=∠QOM, ∠TOM=∠QMO (как сумма равных углов)
Как следствие, ΔTSO=ΔQSM, например, по стороне и двум углам:
QM=TO из равенства треугольников ΔTMO=ΔQOM, ∠QMS=TOS из условия, ∠QSM=TSO как вертикальные
53) Треугольники могут быть не равны - пример на рисунке. Так как заданы только равные углы, то стороны могут оказаться разными.
54) ΔABC=ΔEDC по стороне и двум прилежащим углам:
AC=CE по условию, ∠ACB=∠ECB как вертикальные углы, ∠BAC=∠DEC как смежные к равным углам.