Объяснение:1. Измерение отрезков
Две геометрические фигуры (отрезки, углы,
треугольники и др.) считаются равными, если их
можно наложить друг на друга так, чтобы они совпали.
Отрезки равны, если равны их длины.
Если точка лежит на отрезке , то A B C
+ = .
1. На прямой выбраны три точки , и , причём = 3, = 5. Чему может быть равно ?
(Есть разные возможности.)
B Если точка находится между точками и
A B C
3 5
, то это расстояние равно 3+5 = 8. Но возможен и
другой случай, когда находится вне отрезка .
Нарисовав картинку, убеждаемся, что в этом случае
B A C расстояние равно 5 − 3 = 2. C
3 2
2. На прямой выбраны четыре точки , , ,
, причём = 1, = 2, = 4. Чему может
быть равно ? Укажите все возможности.
B Сначала посмотрим, чему может быть равно
расстояние между точками и . Как и в предыдущей задаче, тут есть две возможности (точка
внутри или вне) | и получается либо 3, либо
1. Теперь мы получаем две задачи: в одной из них
= 3 и = 4, в другой | = 1, = 4.
Каждая имеет по два ответа, так что всего ответов
получается четыре: 4+3, 4−3, 4+1 и 4−1. ответ:
расстояние может равняться 1, 3, 5 или 7. C
3. На деревянной линейке отмечены три деле- 0 7 11
ния: 0, 7 и 11 сантиметров. Как отложить с её отрезок в (а) 8 см; (б) 5 см?
B Используя деления 7 и 11, легко отложить 4
сантиметра. Сделав это дважды, получим отрезок
в 8 сантиметров. Отложить 5 сантиметров немного
сложнее: умея откладывать 8 и 7, можно отложить
1 сантиметр. Сделав это 5 раз, получаем
№1
Длины сторон треугольника должны удовлетворять неравенству треугольника: сумма любых двух сторон больше третьей стороны.
а) 2 + 8 = 10 (см), 10 см < 13 см - построить треугольник нельзя
б) 0,5 м + 0,5 м = 1 м - построить треугольник нельзя.
№2
а)1:2:3 нет, потому что неравенства
триугольника
пусть 1 часть х
х<2х+3х правильно
2х<х+3х правильно
3х<х+2х неправильно
б)2:3:6 нет
2х<3х+6х правильно
3х<2х+6х правильно
6х<3х+2х не правильно
в)1:1:2 нет
х<х+2х правильно
х<х+2х правильно
2х<х+х не правильно
Достаточное условие: сумма двух меньших сторон больше большей стороны треугольника
№3
а) Раасмотрим 2 случая.
1) 6см, 3см, 3 см
6<3+3
6<6 - неверно, значит такой треугольник не существует
2) 6см, 6см, 3 см
6<6+3
6<9 - верно, значит 3 сторона = 6см
б) 8см, 2см, 2см
8<2+2
8<4 - неверно
8см, 8см, 2см
8<8+2
8<10 - верно
3 сторона = 8см
№4
Тут есть 2 варианта любое переписывай
Вар 1
Дан р/б треугольник. Пусть равные стороны по 12 см, а основание 5 см.
12*2 + 5 = 24+5 = 29 см - периметр данного треугольник
Вар 2
Дан р/б треугольник. Пусть равные стороны по 5 см, основание 12 см
Тогда получается, что сумма двух сторон треугольника меньше третьей стороны, т. е. 12 >5+5, чего не может быть согласно неравенству треугольника (каждая сторона треугольника должна быть меньше суммы двух других сторон)
Этот вариант невозможен.
ответ: периметр 29 см
Хх все
Пусть ABCD - параллелограмм, стороны AB=CD=26 см, стороны AD=BC=32 см.
Угол B равен углу D и они по 150 градусов, а углы A и C по 30 градусов, т.к. сумма односторонних углов в параллелограмме равна 180 градусов.
Проведем высоту из точки B, обозначим точку её пересечения со стороной AD-О.
У нас получился прямоугольный треугольник AOB. В котором угол AOB=90 градусов, угол BAO=30 градусов, гипотенуза AB=26 см.
1) Найдем нашу высоту BO. По теореме синусов и косинусов: катет, лежащий против угла в 30 градусов, равен половине гипотенузы, т.е. BO=0.5*AB=0.5*26=13 см.
2) Площадь параллелограмма S=основание*h=AD*BO=32*13=416 см2.
ответ: S=416 см2.