Пусть Х - число участников должно было пойти, тогда (Х+3) - число участников пошло на самом деле 340/Х - расход на 1 участника должно было 380/(Х+3) - расход на 1 участника был на самом деле Известно , что расход на 1 участника ниже на самом деле, чем предполагалось Составим уравнение: 340/Х - 380/(Х+3)=1 340(Х+3) - 380х = х(Х+3) 340х + 1020 - 380х =х^2 +3х - х^2 -43х +1020=0 | *(-1) Х^2 +43х-1020=0 Д=\| 5929=77 Х1= 17 участников должно было пойти Х2= -60 - не подходит , т и отрицательное кол-во Х+3=17+3=20 участников было ответ: 20 участников было
а) 64a² - x² = (8a – x) * (8a + x);
б) x5 – 2x4 + x³ = x³ * (x² - 2x + 1) = x³ * (x – 1)²;
в) 1 – 64z³ = (1 – 4z) * (1 + 4z + 16z²);
г) 36x² - (1 – x)² = (6x – (1 – x)) * (6x + (1 – x)) = (7x – 1) * (5x + 1).
88 + 87 – 86.
Выносим за скобки общий множитель 86 и получаем:
86 * (8² + 8 – 1) = 86 * (64 + 8 – 1) = 86 * 71.
Один из множителей 71, значит, исходное выражение делится на 71. Что и требовалось доказать.
Уравнение.
(x + 1) * (x² - x + 1) = x³ - 2x
x³ - x² + x + x² - x + 1 – x³ + 2x = 0
2x + 1 = 0
2x = -1
x = -0,5.
ответ: х = -0,5.