М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bosssanyawolf
bosssanyawolf
25.11.2022 04:54 •  Геометрия

Найдите площядь равнобедреного прямоугольного тряугольника с гепотинузой 10 см

👇
Ответ:
myagkikhigorek
myagkikhigorek
25.11.2022
Катет равен гипотенузе умноженной на синус противолежащего угла.
Катет равен 10*sin45°=10(√2/2)=5√2
Площадь равна половине произведения катетов
S=(5√2)²÷2=25
ответ: 25 см²
4,7(81 оценок)
Открыть все ответы
Ответ:
katya8631
katya8631
25.11.2022

A1.

Sшестиугольника = \frac{3\sqrt{3} a^2}{2}

ответ: 4

A2.

Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:

S = 4 (\frac{R * R}{2} )= 2 R^2

ответ: 1

A3.

Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):

R = \frac{a\sqrt{3} }{2}

a = \frac{2R}{\sqrt{3}}

Площадь одного треугольника будет равна:

S = \frac{a^2\sqrt{3} }{4}= \frac{4R^2\sqrt{3} }{3*4} = \frac{R^2\sqrt{3}}{3 }

Площадь шестиугольника:

S_w = \frac{6R^2\sqrt{3} }{3} = 2R^2\sqrt{3}

ответ: 2

B1.

Пусть вписанный треугольник - ΔABC, сторона = a; описанный - ΔA₁B₁C₁, сторона - a_1

Для ΔA₁B₁C₁ радиус R = \frac{1}{3} высоты h

h^2 = a^2 - (\frac{1}{2} a)^2 = a^2 - \frac{1}{4} a^2 = \frac{3a^2}{4} \\h = \frac{a\sqrt{3} }{2}

R = \frac{a\sqrt{3} }{2} * \frac{1}{3} = \frac{a\sqrt{3} }{6}

a = \frac{6R}{\sqrt{3} } = \frac{6\sqrt{3}R}{\sqrt{3}*\sqrt{3}} = 2\sqrt{3}R

P = 3a; P_{A_1B_1C_1} = 3 * 2\sqrt{3} R = 6\sqrt{3} R

S = \frac{1}{2} a*h; S_{A_1B_1C_1} = \frac{1}{2} * 2\sqrt{3} R * \frac{2\sqrt{3} R * \sqrt{3} }{2} = \frac{4*3*\sqrt{3} R^2}{4} = 3\sqrt{3} R^2}

Для ΔABC радиус R = \frac{2}{3} высоты h:

R = \frac{a\sqrt{3} }{2} * \frac{2}{3} = \frac{a\sqrt{3} }{3}

a = \frac{R * 3}{\sqrt{3} } = \frac{3R * \sqrt{3} }{\sqrt{3} * \sqrt{3} } = \sqrt{3} R

P_{ABC} = 3\sqrt{3} R\\S_{ABC} = \frac{1}{2} * \sqrt{3} R * \frac{\sqrt{3}R*\sqrt{3}}{2} = \frac{3R^2 * \sqrt{3}}{4}

Найдем соотношение периметров и площадей:

S_{A_1B_1C_1} : S_{ABC} = 3\sqrt{3}R^2 : \frac{3R^2\sqrt{3} }{4} = 4: 1\\P_{A_1B_1C_1} : P_{ABC} = 6\sqrt{3}R : 3\sqrt{3}R = 2 : 1

4,6(89 оценок)
Ответ:
SMILЕ31
SMILЕ31
25.11.2022
∆ ABD - равнобедреный (AB = AD)
обозначим < ABD через  α

тогда <BAD = 180 -2α
<BAD = DAC = 180 - 2α(AD  -биссектриса)
<BAC = 2*<BAD = 360 - 4α (AD - биссектриса)
<DAC = <DCA = 180 - 2α (углы при основе равнобедреного ∆ADC (AD = DC по условию)

<ABC + <BAC + <DCA = 180 (сумма углов треугольника ровна 180 градусов)
α + 360 - 4α + 180 - 2α = 180
540 - 5α = 180
5α = 540 - 180
5α = 360
α = 72 °

<ABC  =  α  = 72 °
 <BAC = 360 - 4α = 360 -288 =  72° 
<BCA = 180 - 2α =180 - 144 = 36°  - это и есть меньший угол треугольника

ответ: <BCA = 36°
Отметь лучший ответ!
4,6(80 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ