М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nigap
nigap
05.07.2022 13:32 •  Геометрия

Решить найти координаты вершин углов прямоугольного треугольника, если его катет и гипотенуза лежат на прямых 2x+3y−1=0 и 3x−y−3=0 соответственно, а одна из вершин, лежащих на этом катете, имеет абсциссу, равную 2. сделать чертеж.

👇
Ответ:
20042007rbn
20042007rbn
05.07.2022
Находим координаты точки А как пересечение заданных прямых,
2x+3y−1=0
3x−y−3=0  умножим на 3

2x+3y−1=0
9x−3y−9=0 

11х    -10 = 0        х = 10/11
 у = (-2х+1)/3 = (-2*(10/11)+1)/3 = ((-20/11)+(11/11)/3 = -9/33 = -3/11.
А((10/11); (-3/11)).

Так как абсцисса точки А не 2, то это абсцисса точки В.
Подставим х = 2 в уравнение катета 2х+3у-1 = 0.
Получаем у = (1-2х)/3 = (1-2*2)/3 = -3/3 = -1.
В(2; -1).

Уравнение катета АВ: у = (-2/3)х+(1/3).
Уравнение катета ВС: у = (3/2)х+ в.
Подставим координаты точки В:
-1 = (3/2)*2 + в
в = -1 - 3 = -4.
ВС: у = (3/2)х - 4  или 3х - 2у - 8 = 0.

Точку С находим решением системы уравнений второго катета и гипотенузы.
3х - 2у - 8 = 0.
3х - у -3 = 0,
Вычтем их второго уравнения первое: у = -5.
х = (у + 3)/3 = (-5 + 3) / 3 = -2/3.
С((-2/3); -5).

Чертёж треугольника дан в приложении.
4,6(100 оценок)
Ответ:
Nady0208
Nady0208
05.07.2022
Извини, я тебе только принцип скажу, ибо инструментов нету под рукой.
Построй на декартовой системе координат эти две прямые. (p.s. в одной системе оба).
Первая прямая: \frac{2x-1}{3}=y
Вторая прямая: 3x-3=y
Точка пересечения - одна из вершин данного треугольника. Треугольник - прямоугольный. Отпусти с одной из прямых на другую отрезок под прямым углом.
Если гипотенуза лежит на второй прямой(3x-3=y), отпусти с него на другой.
Хотя все это не имеет значения. Вот тебе и прямоугольный треугольник. Координаты сама определишь)
4,7(58 оценок)
Открыть все ответы
Ответ:
катейка22
катейка22
05.07.2022
1. Площадь полной поверхности ПИРАМИДЫ равна сумме площадей основания и четырех площадей боковых граней.
Площадь боковой грани (равнобедренного треугольника) равна Sг=(1/2)*Высота грани*основание (сторона квадата).
Высота грани по Пифагору: √[7²-(5/2)²]=√42,75 = 1,5√19см.
Sг=(1/2)*5*1,5√19=3,75√19см².
S=25+3,75√19см².
ответ: S=25+3,75√19см².
2. Площадь боковой поверхности усеченной пирамиды равна сумме четырех площадей боковых граней. Боковая грань - равнобедренная трапеция, так как пирамида правильная. Высота этой трапеции делит большое основание на отрезки, меньшее из которых равно полуразности оснований. Эта полуразность равна (10-6):2=2см.Тогда высота h=2см, так как угол между боковой стороной трапеции и большим основанием равен 45°.
Тогда площадь боковой грани (равнобокой трапеции) равна
Sг=(6+10)*2/2=16см². Площадь боковой поверхности равна
S=4*16=64см².
3. Половины диагоналей оснований (квадратов) равны: АО=5√2, А1О1=4√2.
Тогда АН=АО-А1О1 = √2. (Н - основание высоты пирамиды).
Боковое ребро пирамиды равно АА1=√(2+3)=√5.
Тогда в боковой грани (равнобедренной трапеции) высота равна:
А1Н1=√(АА1²-(AD-A1D1)²/4)=4см. Площадь грани:
Sг=(AD+A1D1)*A1H1/2 = 36см².
Sб=4*36=144см².
4. Диагонали оснований (квадратов) равны 4√2 и 10√2.
Высота пирамиды из площади диагонального сечения (равнобокой трапеции):
28√2=14√2*Н/2=4см.
Боковое ребро пирамиды равно АА1=√(18+16)=√34.
Тогда в боковой грани (равнобедренной трапеции) высота равна:
А1Н1=√(АА1²-(AD-A1D1)²/4)=√(34-9)= 5см. Площадь грани:
Sг=(AD+A1D1)*A1H1/2 = 7*5 = 35см².
Sб=4*35=140см².
4,4(1 оценок)
Ответ:

Найдём проекцию ребра на плоскость основания пирамиды. Она равна половине диагонали квадрата, лежащего в основании. ПрРеб = 5 * cos 45 = 5/sqrt(2)

Заодно найдём проекцию апофемы (пригодится дальше), она равна половине стороны квадрата: ПрАп = 5/2 = 2,5.

Теперь найдём ребро L по теореме Пифагора: его квадрат равен сумме квадратов высоты пирамиды и проекции ребра: L = sqrt ( 7^2 + (5/sqrt(2))^2) = sqrt ( 49 + 12.5) = sqrt ( 49 + 12.5) = sqrt ( 61.5) = 7.842

Угол  а между ребром и плоскостью основания измеряется линейным углом между ребром и проекцией ребра на плоскость основания: соs a = ПрРеб/L = (5/sqrt(2))/sqrt ( 61.5) = 3,536/ 7.842 = 0,4508.  соs a = 63гр.

Апофема А пирамиды (высота треугольника, представляющего собой боковую грань, опущенная из вершины на сторону основания) равна: А = sqrt ( 7^2 + 2,5^2) = sqrt ( 49 + 6,25) = sqrt ( 55,25) = 7,433

Угол  в между плоскостью грани и плоскостью основания измеряется линейным углом между апофемой и проекцией апофемы на плоскость основания: соs в = ПрАп/А = 2,5/sqrt ( 55,25) = 2,5/ 7,433 = 0,3363.  соs в = 70гр.

Площадь поверхности пирамиды складывается из площади 4-х граней и основания: Sосн = a^2 = 5^2 = 25. Sгр = 0,5 А * a = 0.5 * 7,433 * 5 = 18,5825

S пир = Sосн + 4Sгр = 25 + 4 * 18,5825 = 25 + 74,33 = 99,33 кв.см

ответ:S пир = 99,33 кв.см. Угол наклона ребра к плоскости основания примерно равен 63гр., а угол наклона боковой грани к плоскости основания равен примерно 70гр.

 

 

4,8(11 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ