М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
fudhchf
fudhchf
08.04.2022 18:50 •  Геометрия

Конспект окружность. по быстрее заранее !

👇
Ответ:
Может что-то пригодится
Конспект окружность. по быстрее заранее !
4,8(2 оценок)
Открыть все ответы
Ответ:
taniaselikova
taniaselikova
08.04.2022
Если соединить центр окружности с вершинами многоугольника, получим треугольники, сумма сторон которого, расположенных вне окружности, - периметр описанного многоугольника. 
Проведем из центра ( общей вершины каждого получившегося треугольника) высоты к сторонам многоугольника. .
Т.к. площадь треугольника находят по формуле 
   S=a*h:2,
а высота здесь равна радиусу, проведенному в точку касание окружности со стороной каждого треугольника, ⇒ 
 S=a*r:2
Площадь многоугольника равна сумме площадей всех этих треугольников с вершиной в центре вписанной в него окружности. 
S=а₁*r:2+ a₂*r:2+a(n)*r:2=r*(a₁+a₂+a₃+a(n)):2=r*P:2=r*p ⇒ 
Площадь многоугольника равна произведению его полупериметра и радиуса окружности, вписанной в этот многоугольник.( верно, естественно, и для треугольника с вписанной в него окружностью)
S=51*4:2=102
Около окружности, радиус которой равен 4, описан многоугольник, периметр которого равен 51. найдите
4,7(53 оценок)
Ответ:
IvanIvan777
IvanIvan777
08.04.2022
Если из точки B провести перпендикуляр к AB (или из точки С - перпендикуляр  к AC) то он пересечет линию центров в точке E, и AE - диаметр D описанной вокруг ABC окружности.
Легко видеть AB  = D*cos(α/2); α = ∠CAB;
Площадь S = AB^2*sin(α)/2;
 S = r*(AB + BK) = r*AB*(1 + sin(α/2)); r = 39 - радиус вписанной в ABC окружности. Аналогично S = ρ*(AB - BK) = ρ*AB*(1 - sin(α/2)); ρ = 42 - радиус вневписанной окружности.
Отсюда sin(α/2) = (ρ - r)/(ρ + r);
Если кому-то неизвестна связь между площадью и радиусом вневписанной окружности (то есть окружности, которая касается стороны a  и продолжений двух других сторон) S = ρ(p - a); то это выражение sin(α/2) = (ρ - r)/(ρ + r); легко увидеть непосредственно - если провести радиусы в точки касания, и из центра меньшей окружности провести прямую параллельно AB. Там получится прямоугольный треугольник с катетом ρ - r гипотенузой ρ + r и острым углом α/2;
Получилось AB^2*sin(α)/2 = r*AB*(1 + sin(α/2));
D*cos(α/2)*sin(α)/2 = r*(1 + sin(α/2));
D*(cos(α/2))^2 = r*(sin(α/2) + 1)/sin(α/2);
D*(1 - (sin(α/2))^2) = r*(sin(α/2) + 1)/sin(α/2);
D*(1 - sin(α/2)) = r*/sin(α/2); или
D*(1 - (ρ - r)/(ρ + r)) = r*(ρ + r)/(ρ - r);
2*D = 4*R = (ρ + r)^2/(ρ - r);
R = (42 + 39)^2/(4*3) = 2523/4 = 630,75;
4,4(28 оценок)
Новые ответы от MOGZ: Геометрия
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ