Т.к. периметр равен 1, а стороны ромба равны, то одна сторона 1/4=0,25 Если дигонали относятся как 3 к 4, если рассматривать прямоугольный треугольник образованный: стороной ромба, половиной одной диагонали, половиной другой диагонали и обозначить одну часть диагонали за х, то в этом треугольнике гипотенуза равна стороне ромба и равна 0,25, больший катет равен 2х ( половина от большей диагонали), а меньший катет равен 1,5х. По теореме пифагора: (1,5х) в квадрате + (2х) в квадрате = (0,25) в квадрате. 2,25 хквадрат + 4 хквадрат = 0,0625 6,25 хквадрат = 0,0625 хквадрат = 0,01 х = 0,1 Получаем, что одна часть диагонали равна 0,1. В большей диагонали таких частей 4, следовательно она равна 0,1*4=0,4. В меньшей - 0,1*3=0,3. ответ: 0,4 и 0,3.
Для нахождения Р надо знать длины сторон фигуры АВСД; Известно ВС=19; найдем сторону АВ; Проведем биссектриссы из углов А и В до пересечения в точке К; Имеем треугольник АВК-прямоугольный, так как он является половиной равнобедренного треугольника АВС и его биссектрисса угла В и высота будет катетом в этом треугольнике АВК. Расстояние от прямого угла К до стороны АВ является его высотой и h=7 ; Применяя теорему о пропорциональности в прямоугольном треугольнике_|_ опущенного с вершины прямого угла на гипотенузу и обозначив АВ как 2Х, для удобства, получим КВ=Х; и далее:АВ:АК=ВК:h; 2X/X\/3=X/7; Откуда Х=14/\/3; Значит АВ=2Х=28/\/3; В целом имеем:2(19+28\/3), ответ:Р=2(19+28\/3)
Данная нам прямая АС лежит в плоскости, параллельной плоскости диаметрального сечения цилиндра на расстоянии 5 см от него (дано). Рассмотрим треугольник АОВ. Это равнобедренный треугольник с боковыми сторонами, равными R и высотой ОЕ=5 см (дано). Тогда катет АЕ по Пифагору равен √(АО²-ОЕ²). Итак, АЕ=√(13²-5²)=12см. AB=2*AE=24см. В прямоугольном треугольнике АСВ гипотенуза АС=2*АВ, так как АВ лежит против угла 30°. АС=48см. Катет СВ=√(АС²-АВ²)=√(48²-24²) =24√3см. ответ: высота цилиндра равна 24√3 см.
Если дигонали относятся как 3 к 4, если рассматривать прямоугольный треугольник образованный: стороной ромба, половиной одной диагонали, половиной другой диагонали и обозначить одну часть диагонали за х, то в этом треугольнике гипотенуза равна стороне ромба и равна 0,25, больший катет равен 2х ( половина от большей диагонали), а меньший катет равен 1,5х.
По теореме пифагора: (1,5х) в квадрате + (2х) в квадрате = (0,25) в квадрате.
2,25 хквадрат + 4 хквадрат = 0,0625
6,25 хквадрат = 0,0625
хквадрат = 0,01
х = 0,1
Получаем, что одна часть диагонали равна 0,1.
В большей диагонали таких частей 4, следовательно она равна 0,1*4=0,4. В меньшей - 0,1*3=0,3.
ответ: 0,4 и 0,3.