1) 52°
2) 136°
3) 70°
Объяснение:
1) Рассмотрим треугольник ABC.
Внешний угол в треугольнике равен сумме двух внутренних углов не смежных с ним.
∠ABC+∠BCA=100° => ∠BCA=100°-∠ABC
∠ABC=48°
∠BCA=100°-48°=52°
2) Рассмотрим прямоугольный треугольник ABC с прямым углом в вершине A. Тогда ∠ABC=46°
Внешний угол в треугольнике равен сумме двух внутренних углов не смежных с ним.
=> внешний угол = ∠ABC+ ∠BAC = 46°+90°=136°
3) Рассмотрим треугольник ABC, AB=BC. Тогда ∠BAC=∠BCA
Внешний угол в треугольнике равен сумме двух внутренних углов не смежных с ним.
∠BAC=∠BCA, ∠BAC+∠BCA=140 ° => 2*∠BAC=140° => ∠BAC=70°
Центр окружности, вписанной в угол, лежит на биссектрисе угла. А центром окружности, вписанной в треугольник (то есть в три угла), является пересечение биссектрис углов. В равностороннем треугольнике биссектрисы являются медианами и высотами и равны между собой. Медианы треугольника точкой пересечения делятся в отношении 2:1 от вершины. Радиус вписанной окружности - перпендикуляр из центра к стороне. Таким образом, радиус вписанной окружности правильного треугольника равен 1/3 медианы.
r=15/3=5
Объяснение:
У квадрата все стороны равны ,поэтому его площадь вычисляют по формуле: S=a•a
Тогда выйдет .
Дано:
квадрат
а(сторона)=12см
Найти:
________________
Sквадрата
Решение.
Sквадр.=а•а
Sквадр.=12•12=144(см²)