По формуле координаты середины отрезка АС (точка D) равняются ((x₁+x₂)/2;(y₁+y₂)/2), т. е. в данном случае ((-2+4)/2;(1+1)/2)
(2/2;2/2)
точка (1;1)
Тогда медиане BD принадлежат обе точки (2;5) и (1;1). Стандартный вид уравнения прямой y=kx+b. Подставив координаты обеих точек в данное уравнение получим систему двух уравнений:
5=2k+b
1=k+b
Вычтем из 1-го уравнения 2-ое и получим:
4=k подставив k во 2-ое уравнение получим
1=4+b откуда
b=1-4=-3.
Окончательное уравнение: y=4x-3
это радиус легко найти он равен высоте равен диаметр вписанного круга. Из точки пересечения диагоналей. диагонали делет на четыре равных прямоугольных треугольника раз один угол 60°то другой 120 ° диагонали ромба является биссектрисами его внутренных углов. Поэтому диагонали делят ромб на треугольники с углами 90° 60° 30° против угла в 30° лежит катет равным половине стороны ромба которая в этом треугольника является гипотенузой .
Поэтому катет равен 5 см . Высоту треугольника проведенную к стороне ромба ищем из треугольника с гипотенузы 5 см и противолежащим углом в 60°против гипотенузы лежит прямой угол равна 5 sin 60°
5× 3/2 площадь круга равна 25×3/4=75 п/4=18/75 /см/
По моему всё
А). 256
Объяснение:
куча щебня - геометрическое тело вращения конус.
осевое сечение конуса - равнобедренный треугольник:
боковые стороны - образующие конуса,
основание - диаметр основания конуса,
высота, проведенная к основанию треугольника - высота конуса.
рассмотрим прямоугольный треугольник:
гипотеза с = 17 см - образующая конуса
катет h =15 см - высота конуса
катет R - радиус основания конуса, найти по теореме Пифагора:
17^2=15^2+R^2
R= 8 см
по условию известно, что щебень насыпан на квадратную площадку, => вид сверху: круг радиуса 8 см вписан в квадрат.
сторона квадрата а = 16 см
S=16^2=256