М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
savyak444ozb52q
savyak444ozb52q
13.07.2020 08:47 •  Геометрия

Сторона квадрата равна 33 см. вычисли диагональ квадрата

👇
Ответ:
madina2421
madina2421
13.07.2020
Теорема Пифагора
d=√a^2+a^2

d=√2*33^2=33√2см

ответ: 33√2см
4,6(84 оценок)
Ответ:
daryatitova1
daryatitova1
13.07.2020
Диагональ квадрата находится по формуле а умножить на корень из 2
следовательно диагональ твоего квадрата будет 33 умножить на корень из 2
4,4(33 оценок)
Открыть все ответы
Ответ:
Ухв
Ухв
13.07.2020

Отрезки, для длин которых выполняется пропорция

Подобные треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов

Средняя линия фигур в планиметрии — отрезок, соединяющий середины двух сторон этой фигуры. Понятие употребляется для следующих фигур: треугольник, четырёхугольник, трапеция.

треугольники в евклидовой геометрии — треугольники, углы у которых соответственно равны, а стороны соответственно пропорциональны. Являются подобными фигурами. В данной статье рассматриваются свойства подобных треугольников в евклидовой геометрии. Некоторые утверждения являются неверными для неевклидовых геометрий.

MicroExcel.ru

MicroExcel.ru Математика Геометрия

МатематикаГеометрия

Свойства высоты прямоугольного треугольника

11.07.202052995

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые (<90°).

Содержание скрыть

Свойства высоты в прямоугольном треугольнике

Свойство 1

Свойство 2

Свойство 3

Свойство 4

Пример задачи

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Три высоты в прямоугольном треугольнике

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Деление прямоугольного треугольника высотой из вершины прямого угла на подобные треугольники

1. △ABD ∼ △ABC по двум равным углам: ∠ADB = ∠BAC (прямые), ∠ABD = ∠ABC.

2. △ADC ∼ △ABC по двум равным углам: ∠ADC = ∠BAC (прямые), ∠ACD = ∠ACB.

3. △ABD ∼ △ADC по двум равным углам: ∠ABD = ∠DAC, ∠BAD = ∠ACD.

Доказательство: ∠BAD = 90° – ∠ABD (ABC). В то же время ∠ACD (ACB) = 90° – ∠ABC. Следовательно, ∠BAD = ∠ACD.

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

Высота к гипотенузе в прямоугольном треугольнике

2. Через длины сторон треугольника:

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через его стороны

Высота к гипотенузе в прямоугольном треугольнике

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :

Синус острого угла в прямоугольном треугольнике (формула)

Синус острого угла в прямоугольном треугольнике (формула)

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через его стороны

Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой, находящейся на противолежащей стороне

4,5(98 оценок)
Ответ:
отличник738
отличник738
13.07.2020

факторы, определяющие либеральные стороны внешней политики екатерины 2:

1)усиление вляния в мире,2)показать военное преимущество,3)боязнь крестьянских выступлений,4)влияние французских просвятителей: вольтер и др.5)отставание россии от стран западной европы.

факторы, определяющие респрессивное начало внутренней политики екатерины 2:

1)принятие законодательных актов, 2)разрешение помещикам без суда ссылать крестьян на каторгу,3) оплата своих расходов крестьянами,4)запрет о подаче жалоб крестьянами на своих помещиков 5)жалованная грамота-1785 год.

4,6(91 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ