Дан равнобедренный прямоугольный треугольник abc с прямым углом a. точка d на прямой, проходящей через точку b перпендикулярно bc, такова, что ad = bc. чему может быть равен угол bad?
1. кат.1 = 9 По теореме Пифагора: кат. 2 =40 (Кат.1)^2 + (Кат.2)^2 = (Гип.)^2 гип.-? 9^2 + 40^2 = (Гип.)^2 81 + 1600 = (Гип.)^2 Гип. = √1681 Гип. = 41 2. 25^2 - 15^2 = kat^2 625 - 225 = kat^2 kat = √400 kat = 20 1. Треугольник равносторонний т.к. АВ = ВС = АС Высота в равностороннем треугольнике является медианой => Cторона на которую падает высота делится на 2 равных отрезка: , тогда по теореме Пифагора: CH== 23 * 3 = 69 2. Рассмотрим треугольник СНА: Т. к. угол С = 30 гр., то АН - катет, лежащий против угла в 30 градусов, значит, он равен половине гипотенузы АС АН =1/2 АС => АН = 1/2 * 22 = 11 см
Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
ответ 90°