1)Пусть х 1-а часть 2х -угол (например А) 3х- угол В 4 х угол С т. к. сумма углов =180 градусам то 2х+3х+4х=180 9х=180 х=180:9 х=20 градусов-1 часть 2*20=40 градусов угол А 3*20=60 градусов угол В 4*20 =80 градусовугол С ответ: 40,60,80 2)Сумма углов равнобедренного треугольника равна 180 град. Отсюда: Сумма двух углов у основания треугольника равна 180 _160 = 20 град. Так как углы у основания равнобедренного треугольника равны между собой, отсюда: Один угол равен 10 град. Итого углы равнобедренного треугольника равны: 160 град, 10 град, 10 град. 3)углы при основании равны, если один 70, то и второй 70, чтобы найти третий надо 180-(70+70)=40
Дана прямоугольная трапеция АВСД с основаниями ВС = 10 см и АД =15 см и точка S вне плоскости трапеции, равноудалённая от её сторон на 10 см. Найти расстояние H от точки S до плоскости трапеции АВСД.
Пусть проекция точки S на плоскость АВСД - точка О. Длину стороны АВ примем равной х. Точка О тоже равноудалена от сторон трапеции и, поэтому, находится на пересечении биссектрис прямых углов А и В. Поэтому перпендикуляр ОЕ из точки О на АВ делит АВ пополам, Тогда ВЕ = ОЕ = (х/2). Продлим стороны АВ и СД до пересечения в точке К. Отрезок КО - биссектриса угла АКД (пусть это угол α). Отрезок КВ по подобию равен 2х Тангенс угла ОКЕ = α/2 равен ОЕ/КЕ = (х/2)/(2х + 0,5х) = х/(5х) = 1/5. Тангенс полного угла α равен: tg α = 2tg(α/2)/(1-tg²(α/2)) = (2/5)/(1-(1/25)) = (2*25)/(5*24) = 5/12. Теперь можно определить высоту трапеции, равную стороне АВ. АВ = (15 - 10)/tg α = 5/(5/12) = 12 см. Отрезок ОЕ = х/2 = 12/2 = 6 см. Находим искомое расстояние Н от точки S до плоскости трапеции. Н = √(10² - ОЕ²) = √(100 - 36) =√ 64 = 8 см.
ABCD - равнобедренная трапеция, угол A = углу D = 30 градусов, BH и CK - высоты, AB = CD = 30 (см). AD || BC, BC = 14 (см), AD = 50 (см).
Найти: AC.
Решение:
1.Проведём высоты BH и CK, следовательно найдём AH
AH = (AD-BC)/2 = (50 - 14) /2 = 36/2=18 (см).
2. С прямоугольного треугольника ABH (угол AHB = 90градусов):
AH = 18 (см), AB = 30 (см), угол А =30градусов.
Определяем высоту BH.
За т. Пифагора
AB² = AH² + BH²
BH² = AB² - AH²
BH= \sqrt{AB^2-AH^2} = \sqrt{30^2-18^2} = \sqrt{900-324} = \sqrt{576} =24
3. Определяем Диагональ АС.
С прямоугольного треугольника ACK (угол AKC = 90градусов)
За т. Пифагора
AC^2=CK^2+AK^2 \\ AK=BC+AH=14+18=32 \\ AC= \sqrt{CK^2+Ak^2} = \sqrt{24^2+32^2} = \sqrt{576+1024} = \sqrt{1600} =40
ответ: AC = 40 (см).