Плоский угол при вершине правильной треугольной пирамиды равен 90°.
Найти отношение боковой поверхности этой пирамиды к площади ее основания.
Площадь правильного треугольника - а основание правильной пирамиды - правильный треугольник
S=(a²√3):4
Площадь боковой поверхности - это площадь трех граней пирамиды.
Каждая грань - равнобедренный треугольник с основанием а, равным стороне правильного треугольника в основании пирамиды, и высотой h=апофеме.
S=ah:2
Чтобы найти площадь боковой поверхности, нужно найти апофему.
Угол АSC- прямой.
Треугольник ASC - прямоугольный равнобедренный.
Апофема грани пирамиды - высота и медиана этого треугольника.
Медиана прямоугольного треугольника равна половине гипотенузы.
Высота SM равна половине АС и равна а:2
Площадь треугольника АSС=(а*а:2):2=а²:4
Площадь боковой поверхности равна 3а²:4
Отношение боковой поверхности этой пирамиды к площади ее основания
Sбок:S ᐃ АВС=(3а²:4):{(a²√3):4}=√3
1)Сначала рассмотрим треугольники АВО и СОМ
АО = ОС - по условию
ВО = ОМ - по условию
угол ВОА = угол МОС - вертикальные, следовательно треугольники равны по первому признаку равенства треугольников, следовательно АВ = СМ и угол АВО = углу СМО
2)Затем рассмотрим треугольники ВОС и АОМ
ВО = ОМ - по условию
ОС = ОА - поу словию
угол ВОС = углу АОМ - вертикальные, следовательно треугольники равны по первому признаку равенства треугольников, следовательно ВС = АМ и угол АМО = угол ОВС
3) угол АВС = угол АВО + угол ОВС
угол АМС = угол АМО + угол ОМС
угол АМО = угол ОВС
угол АВО = углу СМО, следовательно угол АВС = углу АМС
4)Рассмотрим треугольники АВС и АМС
АВ = СМ - по доказонному (1)
ВС = АМ - по доказонному (2)
угол АВС = углу АМС - по доказонному (3), следовательно треугольники равны по первому признаку равенства треугольников