1)S=0,5 (a+b) h а b-основания h-высота 2)Свойства:Все свойства параллелограмма.Диагонали прямоугольника равны: .Вокруг прямоугольника всегда можно описать окружность.Признак прямоугольника: Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник. 3)Решение: Пусть D– основа перпендикуляра, опущенного с точки А на прямую. Тогда (1 случай) Точки М и С лежат в одной полуплоскости относительно прямой AD на прямой СМ. АМ = 10 см, АС = 4√5 см, MD=6 см.По теореме Пифагора AD=корень(AM^2-MD^2)= корень(10^2-6^2)=8 см.По теореме Пифагора СD=корень(AС^2-АD^2)= корень((4*корень(5))^2-8^2)=4 см – длина проекции наклонной АС.МС=MD-CD=6-4 =2 см ответ: 4 см, 2 см. Тогда (2 случай) Точки М и С лежат в разных полуплоскостях относительно прямой ADна прямой СМ. АМ = 10 см, АС = 4√5 см, MD=6 см.По теореме Пифагора AD=корень(AM^2-MD^2)= корень(10^2-6^2)=8 см.По теореме Пифагора СD=корень(AС^2-АD^2)= корень((4*корень(5))^2-8^2)=4 см – длина проекции наклонной АС.МС=MD+CD=6+4 =10 см ответ: 4 см, 10 см. 4)Дан ромб ABCD: опустим перпендикуляр СЕ из вершины С на сторону AD. В треугольнике CED угол CED=90°, угол EDC=60°, угол ECD=30°. Отсюда ED=CD/2=18/2=9 см. СЕ^2=CD^2-ED^2=324-81=243, CE=√243 см. ответ: √243 см. Как-то так
1) Сумма смежных углов параллелограмма равна 180°. Пусть 1 часть -х , тогда 19х+53х=180, 72х=180,х=2,5 меньший угол равен 19*2,5=47,5 больший угол равен 53*2,5=132,5 2) Пусть меньшая сторона параллелограмма равна х , а большая 9+х . Периметр (х+9+х)*2=62, (2х+9)*2 =62, 4х+18=62, 4х=44,х=11 Меньшая сторона параллелограмма равна 11 3) Периметр (3х+7х)*2=20, 20х =20,х=1 большая сторона равна 7*1=7 4) Сумма 2- х противоположных углов равна 140 ( смежных не может быть , так как их сумма 180) . Противоположные углы равны. 140:2=70. 180-70=110- больший угол