Дано: ∠KOP и ∠PON - смежные. OP и OM-биссектрисы этих ∠. ∠PON=32° Найти: ∠POM Решение: ∠PON=32°. ∠PON и ∠MON равны по первому признаку(две стороны и угол между ними одного Δ равны двум сторонам и углу между ними другого Δ),⇒ ∠MON=32°. Так как ∠KOP и ∠PON смежные,то они также равны,⇒∠KOP=∠PON. Сумма смежных углов равна 180°. Следовательно, 32°+32°=64°-сумма биссектрис. 180°-64°=116°-∠KOP и ∠PON,⇒116°:2=58°-отдельно ∠KOP и ∠PON. ∠POM- это ∠PON+биссектриса OM. А биссектриса OM=58°:2=29°. Следовательно,58°+29°=87°-∠POM. ответ: 87°. ч.т.д.
Обозначим стороны треугольника a,b и c, где является гипотенузой. с=9+12. Не стоить забывать что треугольник прямоугольный, и когда опускается высота с прямоугольной вершины, то она делит наш треугольный на два подобных треугольника (угол 90/2, общая сторона - длина высоты, и углы под 90 градусов на гипотенузе). Так, приступим к теореме Пифагора для наших подобных треугольников: 9^2+x^2=a^2 16^2+x^2=b^2 а^2+b^2=c^2 9^2+x^2+16^2+x^2=(9+16)^2 2x^2+81+256=625 2x^2=288 x=12 (высота) 9^2+x^2=a^2 a^2=9^2+12^2 a^2=225 a=15 16^2+x^2=b^2 b^2=16^2+12^2 b^2=400 b=20 ответ: стороны треугольника а=15 см, b=20 см, с=25 см.
Дано: треуг CDE , <C=90 <D=30 EF биссектриса. Рассмотрим треуг CDE - <Е= 180-(90+30) = 180-120=60° по условию EF - биссектриса, которая делит угол E пополам, следовательно <CEF = <FED = 60/2 = 30° У равнобедренный треуг углы при основании равны, у нас <DEF=<FDE=30°, значит треуг DEF - равнобедренный.
сравнить CF и DF Рассмотрим треуг FCE - прямоуг, <C=90 (по условию) <CEF=30, а по свойствам треугольника напротив угла в 30° лежит каткт, равный половине гипотенузы. т.е. CF=1/2 EF. а в предыдущем задании мы доказали, что треуг равнобедренный и EF=DF, значит CF=1/2 DF и значит CF < DF
∠KOP и ∠PON - смежные.
OP и OM-биссектрисы этих ∠.
∠PON=32°
Найти:
∠POM
Решение:
∠PON=32°. ∠PON и ∠MON равны по первому признаку(две стороны и угол между ними одного Δ равны двум сторонам и углу между ними другого Δ),⇒ ∠MON=32°. Так как ∠KOP и ∠PON смежные,то они также равны,⇒∠KOP=∠PON. Сумма смежных углов равна 180°. Следовательно, 32°+32°=64°-сумма биссектрис. 180°-64°=116°-∠KOP и ∠PON,⇒116°:2=58°-отдельно ∠KOP и ∠PON. ∠POM- это ∠PON+биссектриса OM. А биссектриса OM=58°:2=29°. Следовательно,58°+29°=87°-∠POM.
ответ: 87°.
ч.т.д.