М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ivanow343536373839
ivanow343536373839
31.03.2021 13:35 •  Геометрия

Даны точки a, b, c и d. докажите, что ab^2 +bc^2 +cd^2 + da^2 ≥ ac^2 +bd^2 , причем равенство достигается, только если abcd — параллелограмм.

👇
Ответ:
lari133
lari133
31.03.2021
Начертим четырехугольник ABCD и проведём диагонали AC и BD.
По теореме косинусов:
BD² = AB² + AD² - 2AB*AD*cosA
BD² = BC² + CD² - 2BC*CD*cosC
AC² = AB² + BC² - 2AB*BC*cosB
AC² = AD² + DC² - 2AD*DC*cosD

Теперь сложим все эти четыре равенства:
AC² + AC² + BD² + BD² = AB² + AD² - 2AB*AD*cosA + BC² + CD² - 2BC*CD*cosC + AB² + BC² - 2AB*BC*cosB + AD² + DC² - 2AD*DC*cosD

2AC² + 2BD² = 2AB² + 2BC² + 2DC² + 2AD² - 2AD*DC*cosD - 2BC*CD*cosC - 2AB*AD*cosA -  2AB*BC*cosB
AC² + BD² = AB² + BC² + DC² + AD² - AD*DC*cosD - BC*CD*cosC - AB*AD*cosA -  AB*BC*cosB
AC² + BD² + AD*DC*cosD + BC*CD*cosC + AB*AD*cosA + AB*BC*cosB = AB² + BC² + DC² + AD²
 AD*DC*cosD + BC*CD*cosC + AB*AD*cosA + AB*BC*cosB > 0 (косинус тупого угла < 0, косинус острого угла > 0, против большей стороны лежит больший угол, поэтому произведение с отрицательным косинусом тупого угла со сторонами будет меньше, чем произведение косинуса острого угла с другими двумя сторонами)
Значит, AC² + BD² < AB² + BC² + DC² + AD².

В параллелограмме AB = CD, BC = AD, cosA = cos C = -cosB = -cosD (противоположные стороны параллелограмма равны, противоположные углы равны; т.к. ∠A и ∠B, ∠C и ∠B - односторонние, то косинусы их будут противоположны)
 AC² + BD² + AD*DC*cosD + BC*CD*cosC + AB*AD*cosA + AB*BC*cosB = AB² + BC² + DC² + AD²

AC² + BD² - AD*AB*cosA + AD*AB*cosA + AB*AD*cosA - AD*AB*cosA = AB² + BC² + DC² + AD²

AC² + BD² =  AB² + BC² + DC² + AD² (данное равенство называется тождеством параллелограмма).

 

 
4,5(19 оценок)
Открыть все ответы
Ответ:
Bagila1234
Bagila1234
31.03.2021
Теорема: если прямая перпендикулярна радиусу и проходит через конец радиуса, лежащий на окружности, то она является касательной к окружности.

Дано: ω (О; ОА), прямая а, а⊥ОА, А∈а.
Доказать: а - касательная к окружности.
Доказательство:
Радиус перпендикулярен прямой а. Перпендикуляр - это кратчайшее расстояние от центра окружности до прямой. Значит, расстояние от центра до любой другой точки прямой будет больше, чем до точки А, и значит все остальные точки прямой лежат вне окружности.
Итак, прямая а и окружность имеют только одну общую точку А. Значит, прямая а - касательная к окружности.
4,4(85 оценок)
Ответ:
artem213131
artem213131
31.03.2021

Пусть катеты равны а и b, гипотенуза равна с и высота, проведённая из вершины прямого угла, равна h.

Высота прямоугольного треугольника, проведённая из вершина прямого угла к гипотенузе, равна произведению катетов, делённому на гипотенузу прямоугольного треугольника.

Гипотенузу треугольника найдём по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) :

c² = a² + b² = 5² + 12² = 25 + 144 = 169

c = √c² = √169 = 13 см.

Тогда, по выше сказанному, h равно :

h = ab / c = 5 см*12 см / 13 см = 60 см²/13 см = 4 8/13 см.

4 8/13 см.

4,7(22 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ