Обозначь концы хорды А и В, центр окружности точкой О. Cоедини А и В с точкой О. Получился равнобедренный Δ, где АО и ВО - радиусы окружности. АО = ВО Из точки О проведи высоту к хорде, место пересечения обозначь С ОС высота Δ АОВ. ОС = 5см (по условию) АС = СВ = 26 : 2 = 13 (см) - высота в равнобедренном Δ является медианой и делит противоположную сторону пополам. Рассмотрим Δ АСО; ∠С = 90° По теореме Пифагора определим АС АС = √(АС^2 + CO^2) = √(13^2+5^2) = √194 ≈13,9 Диаметр окружности = 2 АС = 13,9 * 2 = 27,8 ответ: диаметр окружности = 27,8 .
2. 4+7=11 (частей) Одна часть: 44/11 = 2 Большее основание равно: 2*4=8 см Меньшее основание равно: 2*7=14 см
3. Диагонали делят острые углы трапеции пополам => получаем ромб, у которого все стороны равны 8 см. Р=8+8+8+10=34 см
4. Имеем трапецию ABCD. Основания - AD, BC. Диагонали пересекаются в точке P. MN - средняя линия, пересекаемая сторону BD в точке О и AC в точке K. В треугольнике ABC средняя линия MK равна 1/2*BC, а средняя линия KN в треугольнике ACD = 1/2*AD. Треугольник BCP одновременно прямоугольный и равнобедренный, соответственно высота, опущенная из точки P к вершине, является медианой. Она равна 1/2*BC. В треугольнике APD, высота, опущенная из точки P, - медиана. Равна 1/2*AD. Что и требовалось доказать.
Для начала найдем отношение ВР/РС. Для этого: Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD. ∆АКМ ~ ∆BKD по двум углам (1). ∆АРС ~ ∆DРВ по двум углам (2). Из (1) BD/AM=4 и BD=4AM = 2AC. Из (2) BP/PC=2. ВМ - медиана и по ее свойствам Sabm=Scbm. Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc. Sakm=Sabc*1/(2*5)=(1/10)*Sabc. Треугольники ABP и APC - треугольники с общей высотой к стороне ВC. Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc. Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc. Sabk/Skpcm=(2/5)/(7/30)=12/7.
Диаметр равен 2*корень(13*13+5*5)=2*корень(194)