Cечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС - внутренний угол правильного шестиугольника и равен 120°). 0,5*АС=√(4-1)=√3. АС=2√3. Площадь сечения равна 2√2*2√3=4√6. ответ: S=4√6.
равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32