ответ: 50°
Объяснение: Пусть все три данных отрезка пересекаются в точке О. Обозначим ВН высоту из В, АК - биссектрису, МО - срединный перпендикуляр к АВ.
Треугольник АОВ - равнобедренный, т.к. его высота ОМ - медиана ( проходит через середину АВ), поэтому∠ВАО=∠АВО. Примем их равными α каждый. Так как АК - биссектриса, ∠ОАН=∠ВАО=α, а угол ∠ВАН=2 α. В прямоугольном треугольнике сумма острых углов равна 90°. 3α=90°, ⇒ α=30°
В прямоугольном ∆ СВН ∠СВН=90°-∠ВСН=90°-70°=20°
Угол АВС=∠АВН+∠СВН=30°+20°=50°
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)