Треугольник АВЕ равен треугольнику CDF, т.к. АВ=СД, угол 1=углу 2, как накрест лежащие при параллельных прямых АВ и СД и секущей АС. Треугольники прямоугольные равны по гипотенузе и острому углу. А в равных треугольниках против равных углов лежат равные стороны. Значит BE=FD. Но они ещё и параллельны, как 2 перпендикуляра к одной прямой. Отсюда треугольники DEF и DEF равны к прямоугольные, по двум катетам. А в равных треугольниках против равных углов лежат равные стороны. Против угла F лежит сторона ЕД против угла Е лежит сторона BF. Значит они равны. А если в четырехугольнике противолежащие стороны попарно равны, то это параллелограмм. Что и требовалось доказать.
Дано:трап. ABCD,AB, CD - основания,AB=2 см,CD=10 см,AD=8 см,угол D=30⁰,
Найти:
S(abcd)
S=1/2(a+b)*h
Проведем высоту AM.
Рассмотрим тр. DAM - прямоугольный
по условию угол D=90⁰ ⇒ угол DAM 60⁰
в треугольнике с углами в 30,60,90 градусов, катет лежащий против угла в 30 равен половине гипотенузы ⇒ AM=1/2*AD=4 см
S(abcd)=1/2*(2+10)*4=24 см²