М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Анюточка2906
Анюточка2906
10.11.2020 07:28 •  Геометрия

Вромбе abck из вершин b и c опущены высоты bm и ch на прямую ak . найдите площадь четырёхугольника mbch если площадь ромба равна 67 см в квадрате

👇
Ответ:
qazdhnvd
qazdhnvd
10.11.2020
У ромба и четырёхугольника MBCH одно равное основание и одна равная высота, следовательно площади этих четырёхугольников равны, и равны 67 cm^{2}
4,4(79 оценок)
Открыть все ответы
Ответ:
диана27th
диана27th
10.11.2020

Построим отрезок BC длины a. Центр O описанной окружности треугольника ABC является точкой пересечения двух окружностей радиуса R с центрами в точках B и C. Выберем одну из этих точек пересечения и построим описанную окружность S треугольника ABC. Точка A является точкой пересечения окружности S к прямой, параллельной прямой BC и отстоящей от нее на расстояние ha (таких прямых две).

8.2.

Построим точки A1 и B1 на сторонах BC и AC соответственно так, что  BA1 : A1C = 1 : 3 и AB1 : B1C = 1 : 2. Пусть точка X лежит внутри треугольника ABC. Ясно, что SABX : SBCX = 1 :  2 тогда и только тогда, когда точка X лежит на отрезке BB1, и SABX : SACX = 1 : 3 тогда и только тогда, когда точка X лежит на отрезке AA1. Поэтому искомая точка M является точкой пересечения отрезков AA1 и BB1.

8.3.

Пусть O — центр данной окружности,  AB — хорда, проходящая через точку P,  M — середина AB. Тогда |AP – BP| = 2PM. Так как РPMO = 90°, точка M лежит на окружности S с диаметром OP. Построим хорду PM окружности S так, что PM = a/2 (таких хорд две). Искомая хорда задается прямой PM.

8.4.

Пусть R — радиус данной окружности,  O — ее центр. Центр искомой окружности лежит на окружности S радиуса |R ± r| с центром O. С другой стороны, ее центр лежит на прямой l, параллельной данной прямой и удаленной от нее на расстояние r (таких прямых две). Любая точка пересечения окружности S и прямой l может служить центром искомой окружности.

8.5.

Пусть R — радиус окружности S,  O — ее центр. Если окружность S высекает на прямой, проходящей через точку A, хорду PQ и M — середина PQ, то OM2 = OQ2 – MQ2 = R2 – d2/4. Поэтому искомая прямая касается окружности радиуса  

Ц

 

R2 – d2/4

 

с центром O.

8.6.

Возьмем на прямых AB и CD точки E и F так, чтобы прямые BF и CE имели заданные направления. Рассмотрим всевозможные параллелограммы PQRS с заданными направлениями сторон, вершины P и R которых лежат на лучах BA и CD, а вершина Q — на стороне BC (рис. 8.1). Докажем, что геометрическим местом вершин S является отрезок EF. В самом деле,  

SR

EC

=   PQ

EC

=   BQ

BC

=   FR

FC

, т. е. точка S

4,6(25 оценок)
Ответ:
tanyaanya200615
tanyaanya200615
10.11.2020
В условии не указано какой угол=90, будем считать С и С1, АД-биссетриса, ВД=15, ДС=9, ДС/ВД=АС/АВ, АС=х, ВС=15+9=24, АВ =корень(ВС в квадрате+АС в квадрате)=корень(576+х в квадрате), 9/15=х/корень(576+х в квадрате), возводим обе части в квадрат, 81/225=х в квадрате/(576+х в квадрате), 225*х в квадрате=46656+81*х в квадрате, 144*х в квадрате=46656, х=18=АС, АВ=корень(576+324)=30, АВ/А1В1=30/20=3/2, АС/А1С1=18/12=3/2, ВС/В1С1=24/16=3/2, отношения сторон равны стороны пропорцианальны, треугольник АВС подобен треугольнику А1В1С1 по третьему признаку - стороны однного треугольника пропорцианальны сторонам другого треугольника
4,6(39 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ