Треугольник ABD — равнобедренный, т.к. его биссектриса BF является высотой. Поэтому
AF = FD SAFE = SDFE = 5.Кроме того, BC = 2BD = 2AB. Тогда по свойству биссектрисы треугольника = = 2.Следовательно,SDEC = 2SADE = 4SDEF = 20, SADC = 30.Значит,SABC = 2SADC = 60.Треугольник ABD — равнобедренный, т.к. его биссектриса BF является высотой. Поэтому
AF = FD SAFE = SDFE = 5.Кроме того, BC = 2BD = 2AB. Тогда по свойству биссектрисы треугольника = = 2.Следовательно,SDEC = 2SADE = 4SDEF = 20, SADC = 30.Значит,SABC = 2SADC = 60.Треугольник ABD — равнобедренный, т.к. его биссектриса BF является высотой. Поэтому
AF = FD SAFE = SDFE = 5.Кроме того, BC = 2BD = 2AB. Тогда по свойству биссектрисы треугольника = = 2.
MC - перпендикуляр, BM - наклонная, BC - проекция;
Согласно теореме о 3 перпендикулярах, если AB перпендикулярно BC (т.к. треугольник прямоугольный), то AB перпендикулярно BM, следовательно расстояния от точки M до AB - длина BM.
Рассмотрим треугольник ABC:
cos C= BC/AC
cos 30=x/b
√3/2=x/b
x=b√3/2 - длина BC.
Рассмотрим треугольник BCM:
Т.к. MC - перпендикуляр, то треугольник прямоугольный;
Найдем BM по теореме Пифагора:
y^2=a^2+3b^2/4
y^2=(4a^2+3b^2)/4
y=√(4a^2+3b^2)/2 - BM.