Квадра́т — правильный четырёхугольник. Квадрат может быть определён как: прямоугольник, у которого две смежные стороны равны; ромб, у которого все углы прямые. Квадрат обладает наибольшей симметрией среди всех четырёхугольников. Он имеет одну ось симметрии четвёртого порядка (ось, перпендикулярная плоскости квадрата и проходящая через его центр) ; четыре оси симметрии второго порядка (что для плоской фигуры эквивалентно отражениям) , из которых две проходят вдоль диагоналей квадрата, а другие две — параллельно сторонам.
есть теорема - если диагонали четырехугольника в точке пересечения делятся пополам то это параллелограмм. Док-во - четырехугольник АВСД, АС и ВД диагонали, О-пересечение диагоналей, АО=СО, ВО=ДО, треугольник АОВ=треугольник СОД по двум сторонам (АО=СО, ВО=ДО) и углу между ними (уголАОВ=уголСОД как вертикальные) значит АВ=СД, уголВАО=уголДСО - это внутренние разносторонние углы, если при пересечении двух прямых третьей прямой внутренние разносторонние углы равны то прямые параллельны, АВ параллельна СД, если в четырехугольнике две стороны попарно равны и параллельны то четырехугольник - параллелограмм, АВСД-параллелограмм, также можно доказать что АД=ВС, АД параллельно ВС, АВ+ВС=13,6, периметр АВСД=2*(АВ+ВС)=2*13,6=27,2
уравнение
(х-х0)²+(у-у0)²=R²
(x-2)²+(y+1)²=10